

SOMMAIRE

2 • Éditorial

3 • Jury des Prix Hélène Starck et Kerner

4 • Programme des journées

8 • Atelier jeunes chercheurs

« Les réseaux scientifiques et professionnels : des accélérateurs de carrière »

10 • Table ronde grand public

« Patients, médecins, chercheurs : une alliance face aux cancers »

13 • Prix Hélène Starck Oral

Catégorie Doctorat

23 • Prix Hélène Starck Oral

Catégorie Post-Doctorat

29 • Prix Hélène Starck Poster

Catégorie Master

36 • Prix Hélène Starck Poster

Catégorie Doctorat

66 • Prix Hélène Starck Poster

Catégorie Post-Doctorat

73 • Posters Hors Concours

79 • Prix Kerner

88 • Liste des participants

Gilbert LENOIR

Vice-Président de la Fondation ARC

La Fondation ARC est convaincue du rôle central que vous, jeunes chercheurs, jouez dans la lutte contre le cancer par la recherche. Nous mettons un point d'honneur à vous soutenir, à nous assurer que vous êtes formés dans les meilleurs laboratoires, pour que vous intégriez le monde de la recherche, et *in fine* que vous montiez vos propres équipes de recherche. Chaque année, vous êtes plus d'une centaine à bénéficier de notre soutien pour mener à bien vos travaux de master, de thèse ou de post-doctorat. Aujourd'hui, il nous tient à cœur de mettre en lumière vos recherches et votre engagement. Vous aurez également l'opportunité de rencontrer les donateurs de la Fondation, grâce auxquels nous pouvons mener nos actions au quotidien, et qui n'ont qu'une hâte : partager les espoirs que suscitent vos travaux.

ÉDITORIAL

Nancy ABOU-ZEID

Directrice scientifique de la Fondation ARC

La Fondation ARC se mobilise pour garantir que la formation des futurs chercheurs et médecins soit complète. C'est pourquoi, en plus d'accompagner vos formations académiques, nous vous encourageons aussi à interagir et à échanger entre scientifiques. Ces Journées sont une belle occasion pour vous de rencontrer des chercheurs issus de divers horizons, de partager vos expériences, vos résultats, vos hypothèses et, peut-être, générer de nouvelles collaborations. Vous profiterez également du regard aiguisé d'un Jury de grande qualité, mobilisé pour évaluer vos travaux et pour vous aider à les mettre en perspective. En plus de vos compétences et de votre rigueur, la Fondation ARC souhaite valoriser aujourd'hui votre curiosité, votre ouverture d'esprit et votre imagination !

Karin TARTE

Présidente du Jury Hélène Starck 2022 & du Conseil scientifique de la Fondation ARC - Directrice de l'unité mixte de recherche MOBIDIC - « MicrOenvironnement and B-cell : Immunopathology cell Differentiation and Cancer »

En tant de Présidente du Conseil Scientifique de la Fondation ARC, je mesure l'importance donnée à la formation des jeunes chercheurs au sein de la Fondation, à tel point qu'elle constitue un axe stratégique majeur représentant près d'un tiers de nos soutiens. Cette année, j'ai également l'honneur de présider le Jury des Prix Hélène Starck avec, à mes côtés, plusieurs membres de nos instances scientifiques. Nous sommes tous en accord pour souligner la grande qualité des résumés reçus, qui reflète toute la diversité de vos approches et l'excellence des travaux que vous menez au quotidien. Nous sommes impatients de vous rencontrer et de nourrir de riches échanges scientifiques avec vous, jeunes chercheurs qui ferez les grandes découvertes de demain !

Jury 2022 Prix Hélène Starck et Prix Kerner

JURY HÉLÈNE STARCK 2022

- **Karin TARTE**, Présidente – CHU de Rennes
- **Jacques-Olivier BAY** – CHU de Clermont-Ferrand
- **Anne-Sophie CHRETIEN** – Centre de Recherche en Cancérologie de Marseille
- **Alexandre DAVID** – Institut de Génomique Fonctionnelle, Montpellier
- **Thomas FARGE** – CHU de Toulouse
- **Hinrich GRONEMEYER** – Institut de Génétique, Biologie Moléculaire et Cellulaire, Illkirch
- **Christophe LAMAZE** – Institut Curie, Paris
- **Jacqueline LEHMANN-CHE** – Institut de Recherche Saint-Louis, Paris
- **Karen LEROY** – Centre de recherche des Cordeliers, Paris
- **Laurence NIETO** – Centre de Recherches en Cancérologie de Toulouse
- **Julie PANNEQUIN** – Institut de Génomique Fonctionnelle, Montpellier
- **Jean-Ehrland RICCI** – Centre Méditerranéen de Médecine Moléculaire, Nice
- **Stéphanie TORRINO** – Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne

JURY KERNER 2022

- **Charles BEHR** – E=M6
- **Ingrid BERNARD** – Top Santé
- **Charline DELAFONTAINE** – Pleine Vie
- **Thierry FEDRIGO** – L'Est Républicain
- **Pauline FRÉOUR** – Le Figaro
- **Jimmy MOHAMED** – France 5
- **Sylvie MONTARON** – Le Progrès
- **Lise LOUMÉ** – Sciences & Avenir la recherche
- **Emmanuelle REY** – La Dépêche
- **Vincent VALINDUCQ** – France 2

Programme

Lundi 21 novembre 2022

MATIN

8h30-9h • Accueil autour d'un café

9h-9h10 • Ouverture des journées par **Gilbert LENOIR**, Vice-Président de la Fondation ARC & **Karin TARTE**, Présidente du Jury Hélène Starck 2022

9h10-11h25 • Session 1 – Prix Hélène Starck Oral – Catégorie Doctorat

Amandine AMALRIC • Institut des Neurosciences – Montpellier
"Epitranscriptomics": a promising source of circulating biomarkers for personalized medicine

Pierrick BIBER • Centre méditerranéen de médecine moléculaire – Nice
The mechanically-activated deubiquitinase USP9X controls melanoma invasiveness and drug response through YAP stabilization

Marine BRUCIAMACCHIE • Institut de recherche en cancérologie de Montpellier
Synergistic effect of FOLFIRINOX with an ATR inhibitor on pancreatic tumor cells and its microenvironment

Ghita CHABAB • Institut de recherche en cancérologie de Montpellier
Regulatory γδ T cells in solid cancer : characterization, role and ecosystem

Remy CHAR • Centre d'immunologie de Marseille-Luminy
Characterization of RUFY3 protein in Dendritic Cells and macrophages: Potential modulator of autophagy and immunity

Gonçalo FERNANDES • Institut Curie – Paris
Synthetic reconstruction of the hunchback promoter identifies the roles of Bicoid, Zelda and Hunchback in the dynamics of its transcription

Julie OLABE • Centre de recherche bio-clinique – Clermont-Ferrand
Role of the immune microenvironment in adrenal tumorigenesis

Monika VILIMOVA • Institut de biologie moléculaire et cellulaire – Strasbourg
Study of mechanisms regulating the biogenesis of microRNAs expressed by Kaposi's sarcoma-associated herpes virus

Yanan WANG • École polytechnique – Palaiseau
The WAVE shell complex, a novel molecular machine that regulates migration persistence

11h25-11h45 • Pause-café

11h45-13h • Session 2 – Prix Hélène Starck Oral – Catégorie Post-Doctorat

Christine BARUL • Institut de recherche Santé Environnement et Travail – Rennes
Role of occupational exposure to pesticides in cancer mortality: analysis of a cohort of banana plantation workers in the French West Indies

Julie GIRAUD • Centre Paul Papin Institut de Cancerologie de l'Ouest – Bordeaux
TREM1+ CD163+ myeloid cells are potent immunosuppressive cells and associate with poor survival in human liver cancer

Marion GUÉRIN • Institut Pasteur – Paris
The immune system and the anatomical site dictate the clonal composition of developing tumor

Élise MARTIN • Gustave Roussy – Villejuif
INTERWORK – Designing an intervention to help patients return to work after breast cancer

Clémence NGUYEN-VIGOUROUX • Gustave Roussy – Villejuif
Does the concept of plasticity apply to collective migration?

13h-14h15 • Cocktail déjeunatoire

APRÈS-MIDI


14h15 • Session 3 – Prix Hélène Starck Posters

16h45 • Pause-café

18h • Fin de la session posters

Programme

Mardi 22 novembre 2022

MATIN

8h30-9h • Accueil autour d'un café

9h-10h30 • Introduction de la journée par **Nancy ABOU-ZEID**, Directrice scientifique
« Les réseaux scientifiques et professionnels des accélérateurs de carrière »

Amandine BUGNICOURT • Co-fondatrice ADOC Talent Management
Vincent MIGNOTTE • Président de l'Association Bernard Gregory (ABG)

Annabelle SUISSE • Présidente de l'association des Doctorants et Jeunes Docteurs de l'Institut Curie (ABG)

Karin TARTE • Présidente du Jury Hélène Starck 2022 & du Conseil Scientifique de la Fondation ARC - Directrice de l'unité mixte de recherche MOBIDIC - «MicrOenvironnement and B-cell : Immunopathology cell Differentiation and Cancer»

10h30-10h50 • Accueil des donateurs & testateurs

10h30-10h50 • Pause café

10h50-12h30 • Ouverture du Prix Kerner par **François DUPRÉ**, Directeur général et **Chantal LE GOUIS**, Responsable marketing
Présentations en 180 secondes des candidats suivies d'échanges avec les donateurs et testateurs

Simon AHO • Centre de Recherche en Cancérologie de Lyon
Cibler les cellules souches cancéreuses pour traiter le cancer du sein basal-like

Carlo ARELLANO • Institut de Pharmacologie et de Biologie Structurale - Toulouse
Le dialogue cellulaire entre cancer du sein et graisse voisine : une nouvelle piste contre la résistance aux traitements

Christine BARUL • Institut de Recherche Santé Environnement au Travail - Rennes
Pesticide et santé : les travailleurs de la banane qui utilisent des mélanges de pesticides auraient un risque plus important de mourir de certains cancers

Sérgolène LADAIGUE • Institut Curie - Paris
Le pouvoir des tumeurs sur puces : reconstituer l'écosystème d'une tumeur sur un timbre

Alessandro MAIRAGHI • Institut de Psychiatrie et Neurosciences de Paris
Développer un outil pour estimer les risques et les bénéfices de l'ablation chirurgicale d'une tumeur cérébrale

Khaled TIGHANIMINE • Institut Necker Enfants Malades – Paris
L'accumulation des lipides entraîne l'induction de la sénescence et de l'inflammation

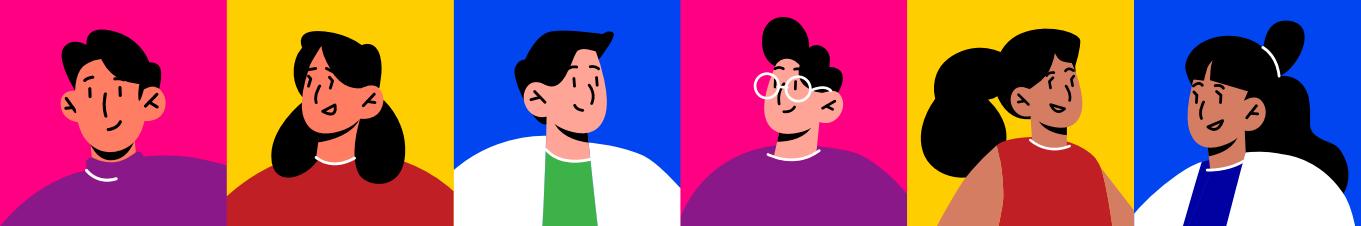
Maxime VASSAUX • Institut de Physique de Rennes
Prédire pour mieux guérir : comprendre comment les sarcomes osseux se développent, avec des ordinateurs

Monika VILIMOVA • Institut de Biologie Moléculaire et Cellulaire - Strasbourg
Couper le mal à la racine : nouvelle stratégie de lutte contre un oncovirus

12h30-14h • Déjeuner de rencontre entre les jeunes chercheurs, les donateurs & testateurs, les membres du Jury et les membres de la Fondation ARC

APRÈS-MIDI

13h30-14h • Accueil institutionnel


14h-15h30 • Table Ronde Grand Public
« Patients, médecins, chercheurs : une alliance face aux cancers »

Corinne BALLEYGUIER • Radiologue, Gustave Roussy
Hélène PÉRÉ • Pharmacienne, Immunologue et virologue, Hôpital Européen Georges Pompidou

Raphaël ITZYKSON • Hématologue, Hôpital Saint-Louis
Guillemette JACOB • Fondatrice Seintinelles
Un(e) patient(e) • Sous réserve

15h30-16h30 • Cérémonie de remise des Prix Hélène Starck, Prix Kerner & Prix « Coup de coeur » des donateurs, par **Claude Tendil**, Président de la Fondation ARC, **Karin Tarte** Présidente du Jury Hélène Starck 2022 et le **représentant du Jury du Prix Kerner**

16h30-18h00 • Cocktail de clôture

ATELIER JEUNES CHERCHEURS

Les réseaux scientifiques et professionnels : des accélérateurs de carrière

Que ce soit pour développer ses projets de recherche, initier de nouvelles collaborations, prévoir la prochaine étape de son parcours académique, ou simplement pour trouver un emploi, ou dynamiser et faire évoluer sa carrière, disposer d'un bon réseau professionnel et

scientifique est un atout précieux. Mais comment intégrer de nouvelles communautés ? Où trouver les évènements de networking ? Comment se mettre en avant, dépasser sa timidité ? Comment s'appuyer sur son réseau pour aller plus loin ? Afin de répondre à ces questions et à bien d'autres, nous avons réuni quatre personnalités investies au quotidien dans l'accompagnement des carrières des jeunes chercheurs. Lors de cet atelier, vous aurez le plaisir d'échanger avec l'audience et avec nos intervenants, et repartirez riches de nouvelles connexions !

Vincent MIGNOTTE

Président de l'Association Bernard Gregory (ABG)

Polytechnicien et docteur en biologie, Vincent Mignotte anime des équipes depuis 1992. Il est tout d'abord responsable d'une équipe de recherche en génétique moléculaire et hématologie au CNRS et Professeur de biologie à l'École Polytechnique et à l'École Nationale des Techniques Avancées. Dans une seconde partie de sa carrière, il se forme au coaching, puis crée une Délégation aux Cadres Supérieurs au sein de la DRH du CNRS. Pendant 6 ans, il se charge du recrutement, de l'accompagnement, de la mobilité et de la formation managériale des cadres supérieurs notamment. Il est ensuite Directeur adjoint pour l'innovation et les relations industrielles au CNRS. Enfin, depuis 2021, il dirige l'ABG où il accompagne les parcours des jeunes chercheurs et participe activement à l'animation de certaines formations.

Annabelle SUISSE

Présidente de l'Association des Doctorants et Jeunes Docteurs de l'Institut Curie (ADIC)

Annabelle Suisse a obtenu son doctorat en Biologie Cellulaire et Moléculaire à New York University en 2018 et est aujourd'hui chercheuse post-doctorante à l'Institut Curie. Elle a obtenu le premier Prix Hélène Stark de présentation orale scientifique de la Fondation ARC aux Journées Jeunes Chercheurs 2021 grâce à ses travaux sur la perte de chromosomes des cellules souches intestinales chez la Drosophile. Annabelle Suisse est également présidente de l'Association des Doctorants/Docteurs de l'Institut Curie (ADIC) et co-organise des petits-déjeuners & afterworks professionnels avec d'autres associations de jeunes chercheurs parisiens. Grâce à ces activités, elle promeut les rencontres entre jeunes chercheurs et la mise en réseau avec d'autres professionnels de la science.

INTERVENANTS

Amandine BUGNICOURT

Co-fondatrice Adoc Talent Management

Docteure en Sciences de la vie, Amandine Bugnicourt a co-fondé en 2008 la société Adoc Talent Management, pour favoriser l'irrigation du tissu socio-économique par les docteurs. Cette société s'est développée en France, au Benelux et au Canada autour de trois activités : le conseil RH en recrutement des docteurs pour des organisations tous secteurs, le coaching carrière et les formations pour les jeunes chercheurs, et enfin, la R&D et l'étude du devenir professionnel des docteurs. Convaincue des atouts des jeunes chercheurs, elle est aujourd'hui recruteuse, formatrice et coach carrière. Elle partagera avec les jeunes chercheurs l'évolution des secteurs et métiers ouverts aux docteurs, ainsi que des conseils pour bâtir sa carrière, notamment en développant et en mettant à profit son réseau.

Karin TARTE

Présidente du Jury Hélène Starck 2022 & du Conseil Scientifique de la Fondation ARC - Directrice de l'unité mixte de recherche MOBIDIC - « MicrOenvironnement and B-cell : ImmunoPathology cell Differentiation and Cancer »

Karin Tarte est professeur d'immunologie et dirige le service « Immunologie, thérapie cellulaire et hématopoïèse » du CHU de Rennes. Elle est aussi Directrice d'une unité mixte de recherche associant l'Inserm et l'université de Rennes 1. Professeure passionnée et chercheuse reconnue, elle est spécialiste des lymphomes B, et plus particulièrement du lymphome folliculaire. Convaincue de l'importance de soutenir la recherche et les jeunes chercheurs, elle assure cette année, la Présidence du Jury des Prix Hélène Starck. Enthousiaste, dynamique, et forte d'une grande expérience, Karin Tarte nourrira de riches échanges avec les jeunes chercheurs, notamment autour de l'importance des collaborations scientifiques pour la poursuite de leurs carrières.

Hélène PÉRÉ

Pharmacienne, immunologue et virologue,
Hôpital Européen Georges Pompidou

Hélène Péré est docteur en Pharmacie et en biologie. Elle est maître de conférence et praticienne hospitalière dans l'Unité fonctionnelle de virologie à l'Hôpital Européen Georges Pompidou – Faculté de médecine Paris Descartes. Ses travaux portent principalement sur l'amélioration du diagnostic et de la prise en charge des patientes et des patients atteints de cancers liés à une infection par le Papillomavirus (HPV). L'un des axes de ses travaux consiste, par exemple, à identifier des signatures moléculaires propres à certaines infections à HPV, pour les mettre en relation avec la réponse à l'immunothérapie des patientes atteintes d'un cancer du col de l'utérus. Pour mener à bien ces travaux, Hélène Péré est pleinement impliquée dans la constitution de biobanques d'échantillons prélevés notamment au moment du diagnostic.

TABLE RONDE GRAND PUBLIC

Patients, médecins, chercheurs : une alliance face aux cancers

Il ne peut y avoir de recherche sur le cancer sans patients. Mais quel rôle jouent-ils et quelle place occupent-ils exactement ? De manière générale, comment s'articulent les interactions

entre patients, médecins et chercheurs pour mieux faire face aux cancers ? La discussion sera menée autour de grands projets visant à améliorer le dépistage, le diagnostic et l'innovation thérapeutique, et donnera la parole aux différents acteurs de cette alliance. Les échanges porteront également sur la question de l'accès pour tout citoyen à cette démarche de recherche. Le débat sera ouvert à la participation du public.

INTERVENANTS

Raphaël ITZYKSON

Hématologue, Hôpital Saint-Louis

Raphaël Itzykson est Professeur d'Hématologie à l'Université Paris Cité et membre du département d'hématologie de l'Hôpital Saint-Louis (AP-HP.Nord), à Paris.

Membre actif de deux groupes coopérateurs français, l'Association Française de la Leucémie Aigüe (ALFA) et le Groupe Francophone des Myélodysplasies (GFM, Raphaël Itzykson s'intéresse particulièrement au développement de la médecine de précision pour traiter les leucémies aigües myéloïdes et à l'évaluation de nouveaux traitements de la leucémie myélomonocytaire chronique, une pathologie rare et sévère qui touche des personnes âgées.

Raphaël Itzykson mène, entre autres, un projet qui vise à comprendre comment la co-existence de plusieurs types de cellules leucémiques chez un patient pourrait expliquer l'émergence d'une résistance aux traitements.

Guillemette JACOB

Fondatrice Seintinelles

Guillemette JACOB est la co-fondatrice et la dirigeante de la communauté Seintinelles. Un communauté de 37 800 citoyens, anciens malades, malades, non malades et chercheurs, qui s'engagent, ensemble pour une recherche contre le cancer plus rapide et plus proche des attentes et des besoins des citoyens. Elle s'interroge donc au quotidien sur la place des citoyens dans la recherche, sur les outils et les méthodologies disponibles pour les engager, les impliquer, et sur les changements culturels à insuffler aussi bien chez les citoyens que chez les chercheurs et les médecins, pour que la collaboration soit fructueuse. Elle est diplômée de l'EM Lyon et travaille depuis 25 ans dans le marketing digital.

Avec la présence d'un(e) patient(e) • Sous réserve

Corinne BALLEYGUIER

Radiologue, Gustave Roussy

Corinne Balleyguier est Professeure de radiologie à Gustave Roussy (Villejuif), où elle dirige le département d'imagerie médicale et du service d'imagerie diagnostique. Son implication dans la recherche se traduit par une participation à de nombreux projets qui l'ont menée, dans les deux dernières années, à cosigner une quarantaine d'articles scientifiques, notamment dans les domaines de l'imagerie innovante du sein, diagnostique et pronostique et les nouvelles techniques en mammographie comme l'angiomammographie, la tomosynthèse ou l'intelligence artificielle.

Depuis 2019, Corinne Balleyguier coordonne le volet français de l'étude internationale MyPeBS. Promue par Unicancer et financée par l'Union Européenne, cette étude vise à évaluer la possibilité d'adapter le dépistage des cancers du sein au niveau de risque de chaque femme.

**26^e Journées
Jeunes
Chercheurs**
en Cancérologie

Prix Hélène Starck Oral

Catégorie Doctorat

AMALRIC Amandine

Scientific supervisor : Sylvain LEHMANN
Institute : Institut des Neurosciences – Montpellier
Team : Protéinopathies

“Epitranscriptomics”: a promising source of circulating biomarkers for personalized medicine

Despite significant progress in targeted therapies, colorectal cancer (CRC) remains a major cause of mortality and morbidity worldwide. Identification of accurate biomarkers could improve diagnosis and promote personalized medicine. Recently, cancer-associated alteration of RNA marks has emerged as a promising source of diagnostic and prognostic biomarkers. Epitranscriptomics is an emerging field that encompasses more than 150 chemical modifications in all types of RNA. These modifications fine-tune gene expression and play a role in key cellular processes in both physiological and pathological contexts. Therefore, a growing number of studies have connected variations of specific modified nucleoside levels in biopsies with cancer onset and progression. Our goal is to exploit multiplex targeted mass spectrometry in order to establish RNA modification patterns that could be used for early CRC diagnosis and patient stratification.

A method using coupled liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and optimized to quantify RNA modifications from solid and liquid biopsies (plasma/serum).

The innovation lies in the fact that we analyze 35 RNA modifications simultaneously in order to establish an «epitranscriptomic signature». A machine learning algorithm able us to stratify patients and to determine the predictive power of these biomarkers. As a proof-of-concept, we have analyzed blood samples from a cohort of 41 CRC patients at different stages of the disease (Adenoma and grades 0, I, II, III, IV) and 20 healthy donors as controls.

12 modifications were successfully detected in circulating RNA (cRNA) and 20 as free nucleosides (free-nuc). Interestingly, using “epitranscriptomic signature”, the prediction of the healthy / CRC status reaches an accuracy of 91.7% and 100% from cRNA and free-nuc data, respectively. This study shows that nucleoside quantification by multiplex targeted MS approaches could help early diagnosis of CRC. A bigger cohort will be soon analyzed to validate the use of our “epitranscriptomic signature” for early CRC detection as well as patient stratification (e.g. discriminate cancer grades or types, such as BRAF mutated).

BIBER Pierrick

Scientific supervisor : Marcel DECKERT
Institute : Centre méditerranéen de médecine moléculaire – Nice
Team : Microenvironnement et cancer

The mechanically-activated deubiquitinase USP9X controls melanoma invasiveness and drug response through YAP stabilization

The Ubiquitin-Proteasome-System (UPS) uses ubiquitin to address for proteasomal degradation. Deubiquitinases (DUBs) remove ubiquitin from their targets to prevent their degradation and with the UPS, they are gatekeepers of protein homeostasis. DUBs can be hijacked to modulate oncogenic pathways, enhancing cell proliferation and/or invasion.

Cutaneous melanoma exhibits a high propensity to form metastasis that are highly resistant to targeted therapies. We have recently shown that extracellular matrix (ECM) stiffening and mechanotransduction play a major role in proliferation, migration and drug-resistance of melanoma cells through the mechanosensor YAP.

To identify DUBs involved in melanoma mechanotransduction, we used cell lines cultivated on collagen matrices with various stiffnesses combined with an activity-based ubiquitin probe for profiling DUB activity. Using this approach and quantitative proteomic, we identified USP9X as a DUB whose activity is increased by collagen stiffness. In silico analysis further revealed that YAP belongs to the USP9X interactome and showed a correlation between USP9X expression and YAP transcriptional signature

in melanoma. We thus hypothesized that USP9X regulates YAP levels in melanoma cells through its DUB activity. Consistently, siRNA-mediated depletion and pharmacological inhibition of USP9X decreased YAP expression at protein but not mRNA levels. Conversely knockdown of the E3 ligase β TRCP increased YAP protein expression. A GST-TUBE pulldown approach revealed that combined USP9X and proteasome inhibition increased YAP poly-ubiquitination, indicating that USP9X deubiquitinates YAP to prevent its proteasomal degradation. In line with a role of USP9X in mechanotransduction upstream of YAP, USP9X targeting was found to impair stiffness-induced responses including YAP nuclear translocation and transcriptional activity, cell migration and invasion. Finally targeting USP9X enhances BRAF inhibitor efficacy, counteracts drug-induced collagen remodeling and delays tumor relapse in a syngeneic melanoma mice model.

Our results reveal an original role of USP9X in melanoma invasiveness and mechanoresistance through stiffness-dependent stabilization of the oncoprotein YAP. We therefore propose USP9X as a “mechano-DUB” in melanoma.

BRUCIAMACCHIE Marine

Scientific supervisor : Christel LARBOURET

Institute : Institut de recherche en cancérologie de Montpellier - Montpellier

Team : Drug resistance and new cancer treatments

Synergistic effect of FOLFIRINOX with an ATR inhibitor on pancreatic tumor cells and its microenvironment

Pancreatic Ductal Adenocarcinoma (PDAC) is an extremely aggressive disease. Recently, a new polychemotherapy oxaliplatin-based (FOLFIRINOX) has been approved. It has showed a significant increase of the overall survival in patients compared to gemcitabine, but associated with more toxicity and still limited efficiency. Most chemotherapies induce their toxicity by provoking DNA damages and replicative stress, leading to the activation of DNA repair pathways.

That is why our research project proposes to find a synergistic association of FOLFIRINOX with a specific inhibitor of DNA damage repair - Ataxia Telangiectasia and Rad3 related inhibitor (ATRi) - to increase the efficiency of the chemotherapy while reducing its toxicity. The resistance to chemotherapy can come from the stroma that represents up to 90% of the tumor mass, therefore the impact of the chemotherapies on the microenvironment can be a key to increase the efficiency of these treatments. In order to be as close as possible to the clinic, the impact of our combination is studied *in vitro* in 3D co-culture models of tumor cells associated with microenvironment cells, more particularly cancer-associated fibroblasts (CAFs).

We demonstrated a synergistic effect of the association *in vitro* (2D and 3D) independently of mutation status in several pancreatic models (ATCC and derived from PDX) and in co-culture with CAFs. We observed chemoresistance from the CAF and a protection of the tumor cells in co-culture. Higher DNA damage were observed in tumor cells treated with FOLFIRINOX combined with ATRi compared to FOLFIRINOX alone. These results were associated with a decrease of DNA damage repair pathways leading to apoptosis. *In vivo*, the association FOLFIRINOX with ATRi significantly inhibits the tumor growth compared to each treatment alone, in both immunodeficient and immunocompetent models. We also observed more immune infiltration in tumors treated with the association compared to the chemotherapy alone. The localization and the nature of infiltrating immune cells are now under investigation.

To conclude, our work shows that FOLFIRINOX associated with an ATRi is highly synergistic *in vitro* in our co-culture models and *in vivo*. This association could be a new therapeutic strategy in order to increase the survival of patients with PDAC for whom only a few solutions have been found until now and that is why this cancer represents a major challenge of public health today.

CHABAB Ghita

Scientific supervisor : Virginie LAFONT

Institute : Institut de recherche en cancérologie de Montpellier - Montpellier

Team : Immunité et cancer

Regulatory $\gamma\delta$ T cells in solid cancer : characterization, role and ecosystem

$\gamma\delta$ T cells contribute to the anti-tumor immunity within the tumor microenvironment (TME) in various cancers. Despite their well-described effector functions, recent studies correlated their presence in the TME with solid tumor progression suggesting that $\gamma\delta$ T cells may display pro-tumor activities. My project aims to characterize those pro-tumoral or regulatory $\gamma\delta$ T cells and decipher their role in cancer.

We demonstrated *in vitro* that inflammatory signals promote the development of a regulatory $\gamma\delta$ T cell sub-population characterized by the expression of CD73 and displaying immunosuppressive functions through the production of immunosuppressive molecules such as IL-10, adenosine and the angiogenic and chemotactic factor IL-8. The challenge associated with the characterization of CD73+ $\gamma\delta$ T cell resides in assessing their existence *in vivo* as well as their relevance in human cancers. We showed in human breast cancer that ~20% of $\gamma\delta$ tumor infiltrating lymphocytes (TILs) expressed CD73 and displayed the same immunosuppressive functions as described *in vitro*, suggesting that they could promote tumor

development via these mechanisms. In line with these observations, we showed that the presence of $\gamma\delta$ TILs is associated with late tumor grades in breast cancer. We extended such observations to ovarian cancer and showed that the density of CD73+ $\gamma\delta$ TILs negatively correlates with patient survival, suggesting that CD73+ $\gamma\delta$ TILs density could be used as a prognosis factor. Using Imaging by Mass Cytometry, we are now investigating the cellular networks of regulatory $\gamma\delta$ TILs (CD73+) and their effector counterpart (CD73-) in breast and ovarian tumors to better understand their role in cancer. Our data show different immediate ecosystems for CD73+ compared to CD73- $\gamma\delta$ TILs, with more cancer-associated fibroblasts in contact with CD73+ $\gamma\delta$ TILs, while CD73- $\gamma\delta$ TILs interact more with activated $\alpha\beta$ TILs reinforcing the idea that CD73+ and CD73- $\gamma\delta$ T cells are functionally different.

Altogether, these data improve our knowledge on human $\gamma\delta$ T cell immunobiology during cancer development, with the in-depth characterization of the new regulatory $\gamma\delta$ T cell subset, their localization and their functions within the TME.

CHAR Remy

Scientific supervisor : Philippe PIERRE
Institute : Centre d'immunologie de Marseille-Luminy - Marseille
Team : PPlab

Characterization of RUFY3 protein in Dendritic Cells and macrophages: Potential modulator of autophagy and immunity

Autophagy is a central regulator of metabolism and inflammation, as well as an important proteolysis node for the treatment of antigenic peptides. This pathway is essential in the host's response to infection and interfaces with almost all aspects of innate and adaptive immunity. Dendritic cells (DC), which are powerful orchestrators of T cells response to antigenic presentation, require significant autophagic activity.

We focused on several poorly characterized genes involved in the regulation of endocytosis and autophagy in DC, among which rufy3. RUN and FYVE domain-containing protein (RUFY) participate in endosome dynamic and membrane trafficking by interacting with small G-Proteins and lipids by RUN and FYVE domains, respectively. RUFY3 is mainly expressed and studied in the brain but doesn't have FYVE domain.

However, no studies have been done in immunology. This is the reason why I tried to decipher the fundamental molecular mechanisms controlled by RUFY3 and unravel its importance for immunity. We first found that in Immune cells, RUFY3 is found as a unique

isoform with a functional FYVE domain. In addition, upon stimulation, the level of rufy3

mRNA and protein is significantly higher. Plus, this isoform is located in lysosomes and its deletion alters lysosome localization and autophagic flux. To prove the action of RUFY3 in endolysosomal pathway, we challenged macrophages rufy3-/- with *S.enterica*, known to use lysosome to replicate, and proved that RUFY3 is located in salmonella containing vacuole and it's required for bacterium replication. Also, we tested *in vivo* Acute Lung Inflammation model with *E.coli* and observed that CD11c-Cre-rufy3^{llox/lox} mice have higher inflammation and presents more clinical pain.

Actually, we found in multiple myeloma patient that high *rufy3* expression is associated with poor prognosis and particularly with bortezomib resistance. These results encourage us to continue and may suggest that RUFY3 have a specific function in immune cells. The effect of RUFY3 on trafficking and autophagy could help us to better understand the fundamental mechanisms involved in host-pathogen interaction. Plus, RUFY3 could potentially act as an effector in multiple myeloma cancer.

FERNANDES Gonçalo

Scientific supervisor : Nathalie DOSTATNI
Institute : Institut Curie - Paris
Team : Epigenetic Plasticity and Polarity of the Embryo

Synthetic reconstruction of the hunchback promoter identifies the roles of Bicoid, Zelda and Hunchback in the dynamics of its transcription

As most tumor cells have generally lost their identity, a key question in the context of cancer, is to understand how cell identities are established and maintain during development. In many developmental systems, cell identity is determined by morphogen gradients providing concentration-dependent positional information along polarity axes. Although the critical role of these gradients is well recognized, it is unclear how they can provide reproducible expression patterns despite the stochastic nature of transcription. To address this question, I studied the response downstream of the Bicoid (Bcd) morphogen gradient in fruit fly embryos, focusing on its main and earliest target gene, *hunchback* (*hb*). I used the MS2-MCP system to fluorescently tag nascent mRNA and analyse transcription dynamics at an unprecedented spatiotemporal resolution in living embryos. Adapting this approach to synthetic MS2 reporters with various combination of DNA binding sites, my work highlighted the roles of Bcd and its partners, Hb and Zelda (Zld), in the transcription mechanism. Expression of a reporter with only nine Bcd binding sites reproduces the hb-MS2 reporter pattern, except for the very steep expression boundary and the speed to reach steady-state. This suggests that Bcd

alone defines the positioning of the boundary but not its steepness nor the speed of its establishment. In addition, binding of Bcd's partners to the promoter speed-up the process by acting in different steps of the transcription mechanism: i) Hb synergizes with Bcd by reducing transcription burstiness and increasing the polymerase firing rate; ii) Zld lowers the Bcd concentration threshold required for Bcd-dependent expression.

In collaboration with physicists, a physical model of Bcd-dependent expression was developed providing a theoretical framework for the experimental data. This model showed that the very rapid establishment of the *hb* expression boundary can be solely explained by an equilibrium involving the binding of Bcd molecules to their NA-binding sites for positional information and requiring Zld and Hb for its temporal dynamics.

Finally, reducing the dose of Bcd by half and quantifying the corresponding shifts of Bcd-dependent reporter boundaries confirms that Bcd is the main source of positional information for *hb* expression but argues that the decay length of the protein gradient is larger than the decay length of the transcriptionally active protein.

OLABE Julie

Scientific supervisor : Pierre VAL

Institute : Centre de recherche bio-clinique - Clermont-Ferrand

Team : Pathophysiologie moléculaire des tissus surrénaux et endocriniens

Role of the immune microenvironment in adrenal tumorigenesis

In contrast with most cancers, adrenocortical carcinomas (ACC) are more frequent in women than men, but the underlying mechanisms of this sexual dimorphism remain elusive. Homozygous deletion of the negative WNT pathway regulator ZNRF3 is the most frequent alteration in ACC patients. Our results show that Cre-mediated inactivation of Znrf3 in steroidogenic cells of the mouse adrenal cortex is associated with sexually dimorphic tumour progression. Indeed, although most knockout female mice develop metastatic carcinomas over an 18 month-time course, adrenal hyperplasia gradually regresses in male knockout mice.

This male-specific regression is associated with induction of senescence and recruitment of macrophages, which differentiate as active phagocytes that clear-out senescent preneoplastic cells. Macrophage recruitment is also observed in female mice. However, it is delayed and damped compared to males, which allows for tumour progression. Interestingly, testosterone treatment of female knockouts is sufficient to induce senescence, recruitment of phagocytic macrophages and regression of hyperplasia. We further show that although macrophages are present within adrenal tumours at 18 months, MERTKhigh active pha-

gocytes are mostly found in indolent lesions in males but not in aggressive tumours in females. Consistent with our observations in mice, analysis of RNA sequencing data from the TCGA cohort of ACC shows that phagocytic macrophages are more prominent in men than women and associated with better prognosis. Altogether, these data establish that phagocytic macrophages prevent aggressive ACC development in male mice and suggest that they may play a key role in the unusual sexual dimorphism of ACC in patients.

VILIMOVA Monika

Scientific supervisor : Sébastien PFEFFER

Institute : Institut de biologie moléculaire et cellulaire - Strasbourg

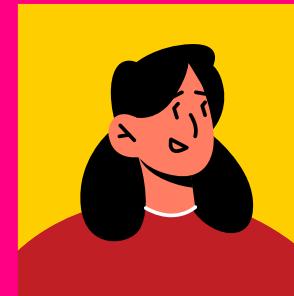
Team : ARN non codants et infections virales

Study of mechanisms regulating the biogenesis of microRNAs expressed by Kaposi's sarcoma-associated herpesvirus

MicroRNAs (miRNAs) are important regulators of gene expression involved in all aspects of cell biology. The biogenesis of these molecules is tightly controlled by numerous regulatory mechanisms allowing to express precise amounts of functional molecules adapted to their physiological functions. Indeed, deregulation in miRNA expression has been associated to many pathologic conditions, including cancer. Several human viruses also encode viral miRNAs that help them to optimize infection conditions and modulate cell environment to favor viral replication. Among them, the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) expresses twelve miRNAs to convert host cell processes, such as proliferation, cell cycle and immune response, to its own advantage and thereby maintain latent infection which is the main factor for KSHV-induced oncogenesis. As a consequence, KSHV miRNAs are directly involved in cell transformation. Moreover, inhibition of KSHV miRNAs would not only decrease the tumorigenic potential of the virus, but also enable to mitigate the infection itself. It is therefore crucial to understand the mechanisms driving and regulating the biogenesis of these molecules. Our study focuses on the regu-

lation of a cluster of ten viral miRNAs which have the specific feature of being transcribed as a polycistron. Polycistronic transcription allows not only to produce all the miRNAs from one single precursor, but also favors development of peculiar post-transcriptional mechanisms that fine-tune the processing of individual miRNAs. The aim of our work is to understand these mechanisms in order to counteract the virus. We have recently discovered a regulatory mechanism operating at the level of the KSHV polycistronic miRNA transcript that enhances the processing of all the miRNAs expressed from the cluster. This is based on the presence of two of the miRNA precursors (pre-miRNAs) on the transcript serving as cis-regulatory elements. We have shown that

their activity is required for the entire cluster expression since their deletion leads to a global decrease of all the miRNAs. We have also developed an approach to inhibit the processing of one of them, pre-miR-K1, and thus impact the expression of the miRNA cluster as a whole. This method based on targeting pre-miR-K1 via antisense oligonucleotides was exploited in KSHV infected cells showing that this strategy could be further adapted for therapeutic purposes.


WANG Yanan

Scientific supervisor : Alexis GAUTREAU
Institute : École polytechnique - Palaiseau
Team : Cytogénèse et morphogénèse cellulaire

The WAVE shell complex, a novel molecular machine that regulates migration persistence

The RAC1-WAVE-Arp2/3 signaling pathway generates branched actin networks that power lamellipodium protrusion of migrating cells. Feedback is thought to control protrusion lifetime and migration persistence, but its molecular circuitry remains elusive. Using roteomics, we identified PPP2R1A among proteins differentially associated with the WAVE complex subunit ABI1 when RAC1 was activated and downstream generation of branched actin was blocked. PPP2R1A was found to associate at the lamellipodial edge with a novel form of WAVE

complex, the WAVE Shell Complex (WSC), that contains NHSL1 instead of the Arp2/3 activating subunit WAVE as in the canonical WAVE Regulatory Complex (WRC). PPP2R1A was required for persistence in random and directed migration assays and for RAC1-dependent actin polymerization in cell extracts. PPP2R1A requirement was abolished by NHSL1 depletion. PPP2R1A mutations found in tumors impaired WSC binding and migration regulation, suggesting that this novel function of PPP2R1A is critical for its tumor suppressor activity.

26^e Journées Jeunes Chercheurs en Cancérologie

Prix Hélène Starck Oral

Catégorie Post-Doctorat

BARUL Christine

Scientific supervisor : Luce DANIELE

Institute : Institut de Recherche Santé Environnement et Travail - Rennes

Team : Épidémiologie en Santé au Travail et Ergonomie (Ester)

Role of occupational exposure to pesticides in cancer mortality: analysis of a cohort of banana plantation workers in the French West Indies

Background: The increasing use of pesticides over the last decades and their dissemination in the environment have raised major concerns among populations and public authorities. Little is known about long-term health effects of pesticides exposure on agricultural workers, particularly in tropical environments, where climatic conditions lead to heavier use of these substances than in temperate areas.

Objective We examined the role of multiple exposure to pesticides on cancer mortality in banana workers.

Methods Data come from a retrospective cohort study of banana workers in the French West Indies who were followed up for mortality from 1 January 1973 to 31 December 2017. Pesticide exposure was assessed using a banana-specific crop-exposure matrix. A total of 8,007 subjects with complete exposure data were included in the study. The role of pesticide exposure profiles (identified with classification methods) and pesticide mixtures were examined using Cox and quantile computation models. The role of each pesticide, after adjustment for other pesticides, was also investigated using hierarchical Bayesian models, which overcome the problem of strong correlations between exposures.

Results Two profiles of subjects were identified: light

vs heavy users of a cocktail of pesticides. Compared to light users, heavy male users showed an increased mortality by hematological malignancy (HR=2.19 95% IC 1.22-3.91) particularly by non-Hodgkin lymphoma (HR=1.83 95% IC 1.01-3.34). In the quantile g-computation model, the simultaneous 25% increase in pesticide exposure levels was associated with an excess of deaths from hematological malignancy, particularly among farm owners. Preliminary analyzes of the different pesticides did not show any association for this last location.

Conclusion Our results suggest a deleterious role of exposure to a mixture of pesticides at high levels in mortality from hematological malignancy, particularly in men and farm owners, without being able to implicate a specific pesticide.

GIRAUD Julie

Scientific supervisor : Maya SALEH

Institute : Centre Paul Papin Institut de Cancérologie de l'Ouest - Bordeaux

Team : Immunology of Cancer and Inflammatory Diseases

TREM1+ CD163+ myeloid cells are potent immunosuppressive cells and associate with poor survival in human liver cancer

Hepatocellular carcinoma (HCC) is among the deadliest cancers worldwide. It is an inflammation-associated cancer arising from viral and non-viral etiologies. The clinical trials for the treatment of advanced HCC has recently shifted to the field of immunotherapy. However, despite significant therapeutic advance, ~75% of patients do not respond to immune checkpoint inhibitors (ICI) for unclear reasons. Recently, a meta-analysis showed a superior efficacy of administering ICI in virally infected patients compared to the metabolic syndrome-associated non-alcoholic steatohepatitis affected patients. This suggests that the tumor microenvironment of HCC is an important-determinant of therapeutic success and highlight the need to further explore human liver-specific immunity towards the identification of other prognostic immune biomarkers for patients' stratification and novel immunotherapies. Expansion of suppressive myeloid cells is a hallmark of chronic inflammation and cancer. Their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. In this study, we set up to discriminate and localize human-liver-specific innate immunity cells to improve the stratification and the treatment of patients with HCC. We implemented single

cell RNA-seq on purified CD45+ panTCR $\alpha\beta$ -CD19- cells freshly isolated from tumor and juxta-tumoral tissues from patients with HCC of different etiologies, and performed spatial transcriptomics. We validated our results by multiplex immunofluorescence, by functional analyses performed on ex-vivo FACS-sorted cells co-cultures, on a mouse model of HCC, and by computational analyses of published HCC data sets. We report a high-resolution atlas of innate immunity cells in HCC and unravel a strong myeloid bias in NK cell differentiation and a remarkable myeloid cell heterogeneity. In particular, among three phenotypically distinct subsets of myeloid-derived suppressor cells (MDSC), we show that TREM1+CD163+ MDSC are the most potent immunosuppressive subset ex vivo and expand in models of liver inflammation and fibrosis in vivo. They highly produce TGF β and are spatially localized at liver fibrotic lesions. A specific gene signature defining TREM1+CD163+ MDSC correlate with poor patient survival in HCC and response to immune checkpoint blockade in different cancers. Collectively, our data support myeloid subset-targeted immunotherapies to treat HCC.

GUÉRIN Marion

Scientific supervisor : Philippe BOUSSO
Institute : Institut Pasteur – Paris
Team : Dynamique des réponses immunes

The immune system and the anatomical site dictate the clonal composition of developing tumor

Tumor development stems from a complex evolutionary process notably linked to genomic and/or chromosomal alterations and to selective processes for cell survival and proliferation. While immune system also exerts a selective pressure on tumor cells, the extent to which immune components shapes the genetic alterations and the diversity of emerging tumors remains to be fully understood. Here, we demonstrate that the diversity and genomic landscape of tumors is strongly shaped by the immune system and by the anatomical site of tumor development. By tracking the genetic evolution of early transformed B cells in distinct hosts

using whole exome sequencing, we established that the immune system has a drastic impact on tumor clonal diversity and mutations. In parallel, we developed a multicolor-barcoding strategy to visualize and quantify clonal heterogeneity *in vivo*. We show that the anatomical site of tumor development also exerted a strong selective pressure on tumor subclones. Anatomical differences in clonal selection were also evident during therapy in a model of anti-CD19 CAR T cells. We propose that the immune system and the anatomical site dictate the clonal dynamics of a developing tumor.

MARTIN Élise

Scientific supervisor : Fabrice ANDRÉ
Institute : Gustave Roussy – Villejuif
Team : Breast Cancer Survivorship Group

INTERWORK – Designing an intervention to help patients return to work after breast cancer

Breast cancer (BC) is the most frequent cancer in women. BC detection and care management have strongly improved during the past decades and now in France, 86% of BC patients will live more than 5 years after diagnosis. At time of diagnosis, 32% of women are < 55 years old and 20% are < 50 years old. Thus, a large part of the women diagnosed with BC are still working, and the disease is likely to impact their professional life. After diagnosis, there is usually a period of sick leave of several months motivated by the acute effects of BC treatments and many patients will be at risk of not returning to work after that period. Work trajectory may impact other aspects of the woman's life, including her well-being, her material situation and her social life. Return to work (RTW) is often seen by cancer survivors as an important part of their recovery. Return to work (RTW) after breast cancer (BC) can be a major challenge for patients. Multidisciplinary interventions seem to be effective but the role of digital solutions is under-developed and therefore not evaluated. We explored the preferences, needs, and barriers regarding RTW interventions, including opinions about the use of digital approaches to deliver such interventions. We conducted a qualitative study based on interviews with

30 patients with BC and 18 healthcare providers in four French regions. Emergent themes were identified using thematic content analysis. Most providers declared that they did not proactively address RTW with patients, mainly due to having other priorities and a lack of knowledge. The following themes emerged: several development and deployment barriers regarding RTW interventions exist, multidisciplinary interventions are preferred, and there is a need to maintain contact between the patient and workplace during sick leave, including pathways and interlocutors that can facilitate RTW. Participants had mostly positive representations of using digital tools to facilitate RTW; however, fear of loss of human contact and the exacerbation of inequalities were identified as possible risks associated with the development of digital-only interventions. Interventions blending the needs and preferences of patients with BC and the healthcare system are warranted. A personalized multimodal approach with mixed digital and in-person features has surfaced as a possible solution to address the weaknesses of existing interventions.

NGUYEN-VIGOUROUX Clémence

Scientific supervisor : Fanny JAULIN
Institute : Gustave Roussy - Villejuif
Team : Invasion Collective

Does the concept of plasticity apply to collective migration ?

Migration is crucial for many physiological processes and deregulated in numerous diseases, including cancer metastasis. Long considered as initiated by a single cell, metastases also result from the collective migration of tumoral cohorts. To date, three modes of migration are described: two modes of single cell migration based either on adhesion and traction (mesenchymal) or on propulsion and actomyosin contractility (amoeboid), and a collective mode relying on the adhesion and traction of the group. Yet, the study of patients' samples revealed tumoral cohorts invading the stroma and lymphatic vessels in the absence of adhesion to the environment. Our team discovered a second mode of collective migration powered by propulsion and polarized contractility. Since only one mode of collective migration was described so far, whether cell groups, similarly to single cells, could be plastic and exploit both traction- and propulsion-based migration has never been addressed. Here, by observing in real time the migration of cancer cell collectives in microfabricated devices, we demonstrate that collective migration plasticity exists.

Mesenchymal cells migrate by adhering and remodeling the extracellular matrix while amoeboid cells squeeze between narrow gaps without adhesion. We first showed that preventing adhesion either bypassing microchannels walls with PEG or by inhibiting β 1 integrins, induced a switch of cancer cell clusters from traction- to propulsion-based migration. Second, confinement was shown to increase single cell contractility, converting mesenchymal cells to amoeboid migration, while reducing contractility switches amoeboid cells to traction-based migration. Inhibiting contractility converted cancer cell clusters from propulsion- to traction-based collective migration in microchannels. Last, our mice models of peritoneal carcinomatosis suggested that collective plasticity is neither an advantage nor a disadvantage for the seeding metastases. It might rather be a common feature hijacked by tumor cell clusters to invade efficiently. Unveiling the determinants of collective plasticity will generate new targets to inhibit cancer invasive behavior and improve patient outcome.

26^e Journées Jeunes Chercheurs en Cancérologie

Prix Hélène Starck Poster

Catégorie Master

ARELLANO Carlo

Scientific supervisor : Olivier NEYROLLES

Institute : Institut de pharmacologie et de biologie structurale - Toulouse

Team : Interactions des mycobactéries avec les cellules-hôte

Role of tumor-surrounding adipocytes in the aggressiveness of a metabolic subtype of triple negative breast cancer

Triple-negative breast cancers (TNBC), defined by the absence of hormonal and HER2 receptors, are a heterogeneous group of cancers. TNBC have a poor prognosis due to their aggressiveness and high metastatic potential. They represent a major therapeutic challenge since, in case of resistance to chemotherapy, survival is dramatically reduced. Understanding the factors underlying the heterogeneity of these tumors is essential. Recently, a metabolic classification of TNBC has been proposed using a large cohort of patients, heterogeneity also found in TNBC cell lines (Gong et al, Cell Metabolism, 2021). The MPS2 metabolic subtype that is of poorer prognosis exhibits a high ability to uptake exogenous fatty acid (FA), suggesting that their interaction with tumor-surrounding adipocytes, a lipid reservoir, might stimulate their aggressiveness and drug resistance. To study this cross-talk, we used a new 3D culture model of human primary mammary adipocytes recently set up in our team. Interestingly, we show that, when cocultivated with adipocytes, the MPS2 sub-group accumulates higher levels of FA than the two other sub-groups. As the cell lines representative of different MPS can all induce FA secretion by adipocytes (a process called lipolysis) at similar levels, thi-

increase of FA uptake by MPS2 cells can be due to an upregulation of lipid transporter, as suggested by a software providing the gene expression of these proteins. In MPS2 sub-type, lipid accumulation is increased by an inhibitor of the FA transport into mitochondria suggesting that the captured FA are used for mitochondrial FA oxidation (FAO). We then investigated the effect of FA secreted by adipocytes on the drug sensitivity of the MPS sub-types. In contrast to the saturated FA palmitic acid, exposure of cancer cells to the monounsaturated FA oleic acid specifically protects the MPS2 cells against doxorubicin-induced toxicity whereas the sensitivity to paclitaxel and mafosfamide was unchanged. Since doxorubicin can induce cell death by ferroptosis, our results suggest that the change in FA content, in addition to the reduced oxidative stress induced by FAO, might modulate ferroptosis in MPS2 cells. To conclude, our results show that the interaction of MPS2 cells with tumor-surrounding adipocytes contribute to chemoresistance and explain their poor prognosis. Validation of this pathway in human tumors might offer new opportunities to treat these aggressive diseases.

ARQUE Basilia

Scientific supervisor : Audrey LUPO

Institute : Centre de recherche des Cordeliers - Paris

Team : Inflammation, complément et cancer

Small cell lung cancer molecular characterization and immune environment

Small cell lung carcinoma (SCLC) is a high-grade neuroendocrine carcinoma with a very poor prognosis. Immunotherapy is now prescribed in association with chemotherapy in disseminated SCLC. The prognostic and predictive roles of the immune environment is currently in discussion. Moreover, there are few reports that focused on the association between the molecular classification and the immune environment. The aim of our study is to characterize the immune environment of SCLC, to evaluate its association with clinical and biological parameters, including molecular classification, and to determine its prognostic role in a cohort of patients with SCLC. We did a retrospective single-center study, including patients with SCLC operated for curative (N=26) or diagnostic intent (N=22) at Cochin Hospital between 2008 and 2018. Clinical and histological data, including DLL3 and PD-L1 expression, were analyzed. Simplex immunohistochemistry targeting ASCL1, NEUROD1 and YAP1 was performed to establish the molecular classification. We developed two 7-plex immunohistochemistry to characterize the immune environment, focusing on

T cells (CD8, CD4, Granzyme B, TIM3, TIGIT, PD1), B and plasmacells (CD20, CD27, CD3, MUM1, CD40 and CD40 ligand). We showed that the immune environment is very heterogeneous in SCLC, as in non-small cell lung cancer (NSCLC). The density of immune populations in early stage was significantly higher than in metastatic stage. The density of immune populations was significantly higher in long-time survivors (survival greater than 2 years), compared with other patients. We did not find a significant association between the immune environment and the molecular classification. In univariate analysis, stage, immune cells PD-L1 expression, NEUROD1 expression, presence of tertiary lymphoid structure and CD4+ T cell density were associated with overall survival and only stage, NEUROD1 expression and TLS were independent prognostic factors. We have shown that the immune environment of SCLC identifies long-time survivors and seemed not associated with the molecular classification. It would now be interesting to evaluate whether the immune environment allows the identification of patients who respond to immunotherapy.

LOYAUX Romain

Scientific supervisor : Ivan SLOMA

Institute : Institut Mondor de Recherche Biomédicale - Créteil

Team : Oncogénèse des lymphomes et tumeurs de la Neurofibromatose 1

Clonal architecture of refractory angioimmunoblastic T-cell lymphoma (AITL) : an ancillary study of ORACLE trial

Angioimmunoblastic lymphoma (AITL) is the most prevalent peripheral T-cell lymphoma in Europe, with a poor prognosis due to frequent relapse. The molecular landscape of AITL shows two predominant altered pathways: mutations in the TCR signaling pathway (*RHOAG17V*) and epigenetic modifiers such as *TET2*, *DNMT3A*, and *IDH2*. Few case reports suggest that AITL may be initiated by a mutation acquired in an immature bone marrow (BM) progenitor. The study aims to determine the frequency of AITL derived from clonal hematopoiesis (CH) in an ancillary study of the randomized Phase 3 clinical trial, ORACLE (NCT03593018), evaluating the efficacy and safety of oral azacitidine (CC-486) compared to single-agent chemotherapy in patients with relapsed or refractory AITL. To determine the clonal architecture of refractory AITL, bone marrow progenitor cultures from 31 patients were performed. Overall, 517 single cell-derived colonies were genotyped by NGS. Meanwhile, total BM cells (bulk) from 29 patients were sequenced with the same panel of 44 genes, and then compared to *cfDNA* and lymph node (LN). 471/517 (91%) colonies were successfully genotyped. CH defined by at least one somatic mutation detected in the BM or myeloid colonies

was found in 29/31 (93.5%) patients. The proportion of patients carrying *DNMT3A* mutations in the BM (75%) was significantly higher (Fisher's test = FET; $P = 0.003$) as compared with the frequency in LN (33%). Conversely, *TET2* mutations were more frequent ($P = 0.007$; FET) in the LN (89%) than in the BM (56%). Hotspot mutations *RHOAG17V* and *IDH2R172G* were never detected in myeloid colonies. Three groups of patients were identified according to the distribution of mutations found in the BM and the LN: 16/31 (52%) patients had AITL clonally derived from CH (CH-related AITL), 13 (42%) had CH unlinked to AITL (CH-unrelated AITL), and two patients (6%) had no CH. CH-related AITL patients had an increased proportion of mutated BM progenitors as compared with CH-unrelated AITL ($51\% \pm 9, 20\% \pm 7\%$, Mann-Whitney test, $P = 0.004$). These patients also carried much more *TET2* mutations in the BM (15 vs. 2; $P < 0.0001$; FET). Biallelic *TET2* mutations ($n=8/16$ patients) and double mutant (*TET2+ DNMT3A*; $n=9$) colonies were exclusively identified in CH-related AITL patients. In conclusion, AITL was initiated in a hematopoietic stem cell in more than half of the patients tested. The prognostic significance of this condition is currently evaluated in the ORACLE Trial.

MATHIOT Laurent

Scientific supervisor : Christophe BLANQUART

Institute : Centre de recherche en cancérologie et immunologie Nantes-Angers - Nantes

Team : Team 1

Study of first line therapies on the molecular profile of non-small cell lung cancer

Non-small cell lung cancer (NSCLC) is the leading cause of death worldwide. Current first-line chemotherapy treatments will result in changes in the transcriptome and miRNome of tumour cells. Our objective was to study the impact of these treatments on the molecular profile of NSCLC cells. We performed three-dimensional culture models, from a patient-derived cell line, four treatments with first-line chemotherapy, carboplatin and pemetrexed. We extracted RNAs that we analyzed by transcriptome and miRNome sequencing. We were able to demonstrate overexpression of *CD274* encoding PD-L1, a target of immune checkpoint inhibitors, and of *NEC-*

TIN4, encoding the transmembrane protein Nectin-4, which makes it a potential therapeutic target. Nectin-4 is also a ligand of TIGIT, a second immune checkpoint. Confocal imaging labeling of PD-L1 confirms the expression of the protein. These results are being confirmed in other tumor lines. The miRNome found overexpression of *miR-22-3p* and underexpression of *miR-15b-3p* which appear as potential biomarkers. We finally realized a relapse model by expanding the previously treated cells, which can be studied later. In conclusion, our study has identified a potential new therapeutic target, Nectin-4, as well as two miRs of interest.

MOIRAGHI Alessandro

Scientific supervisor : Johan PALLUD

Institute : Institut de psychiatrie et neurosciences de Paris - Paris

Team : IMA-Brain

Développement d'un atlas cérébral de probabilité de résection des gliomes diffus supra-tentoriels de l'adulte

Diffuse supratentorial gliomas in adults are the most common primary central nervous system tumors and their incidence increased over time. The extent of surgical resection combined with the preservation of the patient's neurological functions represent main prognostic factors from a neurosurgical perspective. Among different techniques, the use of direct intraoperative functional mapping has allowed a significant reduction in permanent deficits while maximizing the extent of tumor resection. Each diffuse glioma operated on under awake monitoring at the GHU Paris site Sainte-Anne - University of Paris, in PARIS, between 2010 and 2022 will be segmented, annotated with clinical, neuro-cognitive, histomolecular, therapeutic and follow-up data, which will be collected. The first endpoint of this study will be to develop a three-dimensional cerebral normalized atlas to predict the probability of surgical re-

section without neuro-cognitive alteration of a diffuse cerebral glioma in adults using an integrated methodology already validated by our research group. Such an atlas would be useful during decision-making process for resection of eloquent diffuse gliomas and at the same time to improve patient's informed consent preoperatively. The secondary endpoints of this study will be: 1) to develop a «user friendly» methodological routine allowing this research methodology to be adapted to routine clinical practice; 2) to obtain a probabilistic three-dimensional cerebral atlas able to predict the risk of postoperative ischemia; 3) to obtain a three-dimensional cerebral atlas making it possible to predict, basing on preoperative MRI, the probability of neuro-cognitive deficits; 4) to obtain a three-dimensional cerebral atlas to predict for every lesion the probability of a trans-cortical approach without functional lesions.

ROULLEAUX DUGAGE Matthieu

Scientific supervisor : Nathalie CHAPUT

Institute : Gustave Roussy - Villejuif

Team : Immunomonitoring en Oncologie

Human virome epitope-level antiviral antibody profiling identifies the cytomegalovirus (CMV) as the main driver of Senescent Immune Phenotype (SIP) in patients with advanced lung cancer

Immunosenescence is a progressive remodeling of immune functions with a multifactorial etiology including aging and chronic antigenic stressors (inflammation, infections, cancer). We showed that a high pre-treatment SIP (CD28-CD57+KLRG1+CD8+ circulating T cells >39.5%, SIP+) was associated with resistance to ICB in patients with advanced non-small cell lung cancer (aNSCLC). Latent chronic infections and especially CMV may be associated with premature immune aging and affect blood T cell phenotypes (loss of CD28, overexpression of CD57). We aimed to assess the immunisation profile against human viruses and its association with SIP status.

Baseline SIP status was assessed by flow cytometry on fresh blood samples from ICB-treated and polychemotherapy-treated (PCT) aNSCLC patients. Sera from patients were analysed with VirScan (CDI Labs, US), a high-throughput antiviral antibody (Ab) screening method (VirScan™) enabling simultaneous epitope-level antiviral antibody profiling of most viruses with human tropism via phage-display and immunoprecipitation sequencing (PhiP-Seq). VirScan™ detects antibodies against viral proteins corresponding to 206 species (1000 strains, 100,000 viral epitopes) known to have human tropism.

132 aNSCLC patients (115 ICB-treated, 17 PCT-treated) were evaluable for SIP and VirScan assay. The antiviral serological profile seemed similar between SIP+ and SIP- patients, except for CMV where the mean enrichment of anti-CMV antibodies was higher in SIP+. Of the 74 antiviral Ab associated with a higher SIP, 70 (94.6%) recognized CMV-peptides and CMV was the only virus globally associated with a higher SIP. SIP+ patients were predominantly CMV+ compared to SIP- (93% vs 57%, p<0.001), but 70.5% of CMV+ remained SIP-. In CMV+ patients, no difference was observed in the number of CMV epitopes targeted by antibodies (p=0.62) nor in their relative abundance between SIP+ and SIP- patients. Among all clinico-biological parameters studied in the CMV+ population, only median age was higher in SIP+ compared to SIP- patients (70 years vs 63 years, p=0.01).

Among 206 species, only anti-CMV Ab were associated with SIP+ status, which mainly concerned elderly patients. Further work investigating the predictive value of CMV in the response to ICB in patients older than 60 years old is ongoing.

26^e Journées Jeunes Chercheurs en Cancérologie

Prix Hélène Starck Poster

Catégorie Doctorat

ABDI GALAB Mahdia

Scientific supervisor : Estelle NICOLAS
Institute : Centre de biologie intégrative - Toulouse
Team : Chromatine et prolifération cellulaire

Role of the histone methyltransferase SETD2 in oncogene-induced senescence

Cellular senescence is an anticancer mechanism allowing a stable proliferation arrest of cells exposed to diverse stresses such as DNA damage and oncogenic activation. In oncogene-induced senescence (OIS), the entry of cells into senescence is preceded by a strong proliferative burst, replicative stress and DNA damage and requires the activation of DNA damage checkpoints. In addition to growth arrest, a large-scale chromatin reorganization occurs in OIS with the formation of SAHFs (Senescence-Associated Heterochromatin Foci). These SAHFs are dense foci of DNA composed of two non-overlapping layers of heterochromatin marks and delimited by an active mark of transcription, the lysine 36 trimethylation of histone H3 (H3K36me3). H3K36me3 is established during gene transcription by SETD2, a tumour-suppressor protein, mutated in various types of cancer such as breast cancer and renal cell carcinoma. Nevertheless, the involvement of SETD2 and H3K36me3 in senescence in particular in SAHF formation remains to be explored. Here, we show that the levels of SETD2 decrease during RAF1 OIS. One hypothesis is that the decrease of SETD2 expression favors the entry of cells

into senescence. To test this hypothesis, SETD2 expression was inhibited by RNAi or CRISPRi in proliferating cells. Strand-specific RNA-Seq analyses showed that SETD2 inhibition leads to the deregulation of 52 genes and to the up-regulation of several antisense and read-through transcripts, which are due to transcription beyond the termination site of genes and for which we previously showed their up-regulation in RAF1 OIS. We also found that the depletion of SETD2 resulted in an increase of DNA staining heterogeneity, an indicator of DNA compaction in individual cells, which could reflect the formation of SAHFs. Moreover, SETD2 inhibition in proliferative cells or in cells subjected to moderate oncogene activation resulted in increased DNA damage. This was accompanied by an increased number of cells passing S phase suggesting that SETD2 inhibition could favor a proliferative burst and replicative stress. These results suggest that the decrease in SETD2 expression during senescence could participate to the induction of senescence-specific read-through and antisense RNAs, the formation of SAHFs and DNA damage response.

AHO Simon

Scientific supervisor : Véronique MAGUER-SATTA

Institute : Centre de Recherche en Cancérologie de Lyon - Lyon

Team : BMP, Ecosystem, Stemness and Dynamic in Cancer

Role of the BMP pathway in breast cancer stem cells formation and basal-like breast cancer initiation

Breast cancer is the leading cause of cancer death in women worldwide. It is a heterogeneous disease with a number of molecular subtypes. The basal-like subtype has the poorest prognosis. It is characterised by increased expression of basal differentiation markers and significant genetic instability, frequently due to alterations in homologous recombination DNA repair pathway. It is also enriched in cancer stem cells. These cells seem to be involved in the early stages of carcinogenesis but also in resistance to cytotoxic treatments and relapse, hence the interest of targeting them for patient outcome. Several signalling pathways influence their biology, notably the bone morphogenic protein (BMP) pathway. Dysregulation of this pathway has been demonstrated in some luminal tumors but its involvement in the emergence of basal-like tumors remains to be explored.

Using primary samples and public databases, we searched for BMP pathway abnormalities in basal-like tumors and BRCA1-mutated predisposed tissues. We also used the MCF10A human immature mammary epithelial cell line to model cancer stem cells formation. **RESULTS:** We show that the expression of both BMPR1A receptor and BMP4 ligand are deregulated in basal-like tumors and BRCA1-mutated predisposed tissues. These deregulations are linked with transcriptional repression of BRCA1 and BRCA2 in MCF10A cells. This leads to a situation of simultaneous haploinsufficiency for these two genes. The functional consequences include preferential differentiation according to the basal phenotype and alterations in homologous recombination in the form of over-recruitment of RAD51 after DNA damage, inducing G0 accumulation without major associated apoptosis events.

We suggest a role for the BMP4-BMPR1A axis in the early stages of carcinogenesis of basal-like breast tumors, in promoting basal differentiation and genetic instability.

BEAUMALE Eva

Scientific supervisor : Nicolas JOLY

Institute : Institut Jacques Monod - Paris

Team : Cycle Cellulaire et Développement

Characterization of functional roles of MEI-2 subunit in the regulation of Katanin microtubule-severing activity in *C. elegans*

Microtubules are dynamic polymers of cytoskeleton, essential for diverse cellular events such as intracellular transport, cell division and cell migration. Among regulators of microtubule dynamics is the family of Microtubule-Severing Enzymes (MSE) consisting of ATPases able to sever microtubules in order to modulate their number, length and network organization. A defect of activity can cause severe human pathologies including neurodegenerative diseases and many cancer, as breast, prostate, thyroid or lung cancers. MSE family comprises three members: Spastin, Fidgetin and Katanin. Their mechanism of action is well studied, but how their activity is regulated is not known. To answer this question, we are using *C. elegans* Katanin, whose activity is crucial for meiotic spindle assembly during female meiosis, as a model. Its activity however essential for meiosis has been described as toxic for mitosis during embryonic development. In order to understand how Katanin activity is regulated during the meiosis-mitosis transition, we wanted to determine how Katanin binds specifically its substrate and how this interaction contributes to modulate Katanin activity. Through combination of *in vitro* and *in vivo* approaches, I have identified two distinct Katanin microtubule-binding domains. Mutations of these domains are modifying Katanin activity in a charge-dependent manner. Moreover, I have determined that several tubulins are specifically targeted by Katanin to interact with microtubules. These results demonstrate a pre-

cise enzyme-substrate interaction required for Katanin activity during meiosis. By implementing, for the first time, a functional tool allowing us to follow Katanin localization in the whole worm, we have highlighted, that even if Katanin levels are drastically reduced during the meiosis-mitosis transition, Katanin remains present in mitosis, specifically on the mitotic spindle during embryonic development. This unexpected result raises the question of Katanin roles during mitosis. Our work will contribute to highlight different Katanin modes of regulation allowing us, in the future and in therapeutic goal, to understand how an over-activity of MSE could be controlled in a pathological context.

BERCIER Pierre

Scientific supervisor : Hugues DE THÉ
Institute : Collège de France - Paris
Team : Oncologie Cellulaire et Moléculaire

PML nuclear bodies and oxidative stress response

ProMyelocytic Leukemia (PML) protein organizes stress-sensitive, core-shell, membrane-less organelles called PML nuclear bodies (NBs). PML is involved in a number of physiological and pathological mechanisms, such as apoptosis, senescence, stem cell renewal or tumor-suppression. PML may elicit these functions by scaffolding the spherical shell of NBs and subsequently recruiting partner proteins, as well as their modifying enzymes in the inner core, acting as cellular hubs controlling their post-translational modifications, in particular SUMOylation. PML NBs are disrupted in Acute Promyelocytic Leukemia (APL), driven by a chromosomal translocation yielding to the expression of the PML/RARA fusion protein. Combination therapy based on arsenic trioxide (ATO) and retinoic acid treatments drives APL cure by forcing NB reformation and subsequent activation of senescence program in APL cells. Through direct binding, ATO targets the PML part of PML/RARA, but also PML expressed from the non-rearranged allele, promoting a rapid increase in PML NB formation, both in APL and non-APL cells. Despite extensive research,

the exact mechanism of action of arsenic on PML remains to be solved. Moreover, PML is necessary for the therapeutic effects of the arsenic/interferon combination in adult T cell leukemia driven by HTLV1 and in myeloproliferative syndromes. As PML NB formation is likely the basis of their function, our lab is interested in solving the exact mechanism of PML NB assembly, regarding its therapeutic role in cancer, in particular in response to arsenic, and demonstrate any link between control of PML dynamics and PML NBs activity. Here, combining high-resolution of a specific PML domain with in cellulo studies of PML dynamics at NBs, we unravel that a particular domain of PML controls the formation of PML NBs and their dynamics through the formation of a trimer stabilized by hydrophobic interactions between alpha helices. We elucidate that arsenic induces NB formation by directly binding to critical cysteine residues in the alpha helix, stabilizing the trimeric structure and immobilizing PML into NBs. Critically this domain is mandatory for the function of NB in vivo, controlling PML-induced partner SUMOylation.

BRUZEAU Charlotte

Scientific supervisor : Sandrine LE NOIR
Institute : CRIBL - Limoges
Team : B NATION

Influence of heavy chain locus regulatory elements on nuclear organization and genome integrity of B cell

According to a study conducted by Santé Publique France with the National Cancer Institute, in 2018, 12% of newly diagnosed cancers were hematological malignancies. The most frequent hematological diseases emerge from the B lymphocyte (LB), a cell at the heart of the adaptive immune response due to its ability to produce antibodies (Ac). In order to produce highly specific antibodies, the B lymphocyte resorts to various gene alterations involving the introduction of double-strand breaks or the introduction of point mutations within the locus encoding the immunoglobulin heavy chains (IgH). Because of these characteristics, the LB is constantly at risk of illegitimate events such as oncogene mutations or translocations, making them constitutively active and thus becoming initiators of lymphomagenesis. For example, in 30-40% of diffuse large B-cell lymphoma cases, the Bcl6 oncogene is deregulated by translocation or mutation. The understanding of the mechanisms inherent to the occurrence of such events

is therefore a fundamental oncology issue. Our project consists in determining the role of the IgH regulatory regions on the nuclear organization of the LB and how this organization allows the maintenance of the LB genomic integrity. Our results show that inactivated LBs from models with altered IgH regulatory regions, the mutation rate of the Bcl6 oncogene is increased, which correlates with its proximity to the IgH locus and an increase in its transcription. This suggests an important role of regulatory regions in LB genomic integrity.

BUDZYK Manon

Scientific supervisor : Franck PEREZ
Institute : Institut Curie – Paris
Team : BASTO – Biologie des centrosomes et de l'instabilité génétique

Identification of suppressors of polyploid cell proliferation

Polyploid cells contain multiple copies of their entire genome. Whole genome duplications (WGD) are associated with genetic instability and contribute to cancer genome evolution. However, the molecular mechanisms linking polyploidy to genetic instability are still poorly understood. We recently established that in the first interphase following unscheduled WGD, cells fail to replicate their genome in an optimal manner, leading to DNA damage. Further, when cells enter mitosis, they fail to assemble bipolar spindles, which contribute to generate abnormal karyotypes. We now want to identify pathways becoming essential during polyploid cell proliferation. To do so, we developed an *in vivo* model of WGD, using *Drosophila* neural stem cells. After polyploidy induction, these cells can continue to proliferate, reaching high levels of ploidy, while accumulating DNA damage. To identify essential factors for polyploid cell pro-

liferation, we screened for suppressors of polyploid cell proliferation. We identified Gen/GEN1, a member of the Rad2/XPG endonuclease family, resolving DNA intermediates during mitosis. Strikingly, depletion of Gen in polyploid cells slows down the cell cycle, while Gen overexpression results in accelerated cell cycles. Importantly, in diploid cells, alteration of GEN levels does not cause major defects. These results suggest that polyploid cell proliferation relies on proteins that are dispensable in diploid cells, but also that a nuclease that is exclusively active during mitosis has an unexpected influence on cell cycle timing. Finally, we show that de-regulation of the levels of Gen impact DNA damage in polyploid cells, having broader implications in cancer. Indeed, through bioinformatic analysis, we found that tumors with high levels of tetraploid cells seem to rely on increasing levels of GEN1 to survive.

CALVARY Lisa

Scientific supervisor : Krysztof JAGLA
Institute : Centre de recherche bioclinique – Clermont Ferrand
Team : Mirouse

Study of WAVE Regulatory Complex function in epithelial dynamics during development and tumoral initiation

During development, epithelial tissues undergo impressive morphological changes. Some of them, like cell migration, are also involved during tumoral initiation or progression. Follicular epithelium is a powerful model to study epithelial dynamics as it elongates through its antero-posterior axis during its maturation. This elongation is correlated with a process called cell intercalation allowing neighboring cells exchanges observed in a lot of developmental processes requiring convergent extension. By performing a genetic screen of F-Actin regulators, I was able to identify WAVE Regulatory Complex (WRC), involved in the generation of branched F-Actin, as required for proper early elongation. Further analysis revealed that WRC was recruited at tri-cellular junctions, where it generates lamellipodia between adjacent follicular cells. Statistical analysis of cell junction length pointed out that WRC was involved in junction lengthening and that its absence causes defect in-

the resolution of cell intercalation. We also showed that the recruitment of WRC at this particular sub-cellular localization was dependent of two proteins that co-localized with WRC, Sidekick (Sd) and Fat2 and some preliminary data seem to indicate that it can be activated through the small GTPase Rac by the GEF Myoblast city (Mbc). Interestingly, WRC was already described as an invasion suppressor that correlates with a decrease of tumors aggressiveness. Sd and Mbc are also conserved in humans, with Mbc homolog being involved in invasion properties and Sd being frequently mutated in epithelial cancers. Nevertheless, functional links between these proteins in normal, or in a pathological context have never been established before and this work support the hypothesis that they could act in the same pathway to promote the generation of cell protrusions, and, in a pathological situation, to enhance the aggressiveness of tumor cells.

COCHARD Audrey

Scientific supervisor : Zoher GUEROUI
Institute : Ecole Normale Supérieure - Paris
Team : Pôle chimie physique et biologique de la matière vivante

Engineering artificial condensates in cells to study the role of RNA and molecular motors in controlling their formation

Biomolecular condensates, like nucleoli and stress granules (SGs), are ubiquitous functional subunits of intracellular organization. Phase separation has emerged as a common model to explain their formation. An increasing number of them are being described, exhibiting compositions and functions depending on the cellular context, but also shedding light on links with neurodegenerative diseases and cancer. Indeed, many condensates have modified biophysical properties in response to cancer, and some can even help in cancer diagnosis. PML body absence is thus a marker of acute promyelocytic leukemia. Upregulation of SGs in cancer cells may allow for a sequestration of various stressors and prevent apoptosis. In addition, many cancer-related proteins like the RNA-binding protein FUS (Fused in sarcoma) form condensates and, if detected, could help to diagnose specific cancers. Studying the biophysical properties of condensates can be valuable in cancer diagnosis, as their size, dynamics and composition are often altered in cancer cells.

However, how cells, even healthy ones, regulate these properties remains unclear. Moreover, endogenous condensates have a very complex composition, and a need for reconstitution study has emerged, but most of them are carried out *in vitro* and fail to reconstitute the cellular environment. Therefore, my PhD aimed (1) at building artificial condensates in cells and (2) at investigating the role of RNA and molecular motor in controlling the biophysical properties of condensates. First, recruiting a target RNA in our artificial condensates allowed us to suggest a mechanism for the regulation of condensates size and number, whereby RNA molecules adsorbed on condensate surface would modify their viscoelastic properties as well as prevent their growth and coalescence by steric hindrance. Then, we functionalized condensates with motor proteins and looked at the impact of their dynamics. We finally reconstituted an RNA transport system, which should be very useful for looking at the importance of subcellular localization.

DEMOUCHY Flora

Scientific supervisor : Grégoire MICHaux
Institute : Institut de Génétique et Développement - Rennes
Team : Dynamique des épithélia

Intestinal hyperplasia is controlled by the PAR-4/LKB1 tumor suppressor in *Caenorhabditis elegans*

The polarity and tumor suppressor protein PAR-4/LKB1 is thought to be a major regulator of intestinal physiology. Its ectopic activation is indeed sufficient to induce apical microvilli formation in intestinal cancer cell lines. Moreover, mutations in the *lkb1* gene are responsible for the Peutz-Jeghers syndrome in which patients develop benign intestinal polyps. As this master kinase acts via various signaling pathways, it is crucial to better characterize its role in enterocytes *in vivo*. To do so, we used confocal and electron microscopy to observe the intestinal epithelium in *Caenorhabditis elegans* *par-4* mutant embryos. Surprisingly, PAR-4 is not strictly required for intestinal polarity and microvilli formation. However, *par-4* mutant embryos display extra enterocytes, which lead to striking defects in tissue architecture, notably to strong lumen deformations. Lineage experiments revealed that PAR-4 does not control the number of enterocytes by regulating cell proliferation, but rather by controlling cell

fate specification during embryogenesis. We took advantage of the well-described lineage of *C. elegans* embryos to identify which cells abnormally adopt an intestinal fate. While in wild type embryos intestinal cells exclusively arise from the Eblastomere, in *par-4* mutants additional enterocytes arise from the Cblastomere. Thus, PAR-4 prevents intestinal specification in the C lineage of wild type embryos. We are currently testing whether this involves the regulation of specific transcription factors. We are also investigating the possible link between PAR-4 and two other kinases, PAR-1 and GSK-3, which also control intestinal cell number and specification of the C lineage. Altogether, this work will allow us to characterize a novel signaling pathway by which PAR-4 regulates cell fate specification. This appears to be essential to prevent intestinal hyperplasia in *C. elegans* and could provide a new paradigm to analyze the origin of Peutz-Jeghers syndrome intestinal polyps.

DESIGAUX Théo

Scientific supervisor : Nicolas L'HEUREUX
Institute : Bioingénierie tissulaire -UMR1026 – Bordeaux
Team : ART Bioprint

Deciphering the dialogue between breast tumor cells and their ecosystem, following radio/chemotherapy, using bioprinting technologies

Breast cancer is the most common type of cancer in women, making it a major public health issue. Depending on tumor subtype and dissemination, cancer therapy includes tumor resection, radiotherapy and various systemic treatments to avoid relapse. Recently, our understanding of microenvironment effect on not only cancer development, but also metastasis and resistance to treatment have greatly increased. Endothelial cells have been shown to secrete paracrine factors, including ceramide, in response to radio-induced oxidative stress. While it stimulates endothelial cells apoptosis, these signals also inhibit cancer proliferation. However, even if reinforced by consistent in vivo results, there is still a gap between these findings and human clinical relevance. In the last decade, biofabrication processes have emerged as a powerful tool to build in vitro tunable models using human cells and biomaterials. Here, we discuss a 3D bioprinted breast cancer model that will be used in future work to elucidate these mechanisms in complex human microenvironments. We used MDA-MB231 or MCF7 cell line in combination with Human Umbilical Vein Endothelial Cell (HUEVC) and primary fibroblasts, normal (NSF) or cancer

associated (CAF) to mimic the tumor and its microenvironment. By mixing these cells with a hydrogel composed of Collagen-Methacrylate and Hyaluronic Acid Metacrylate, functionalized with laminin-derived peptides, we obtained a printable bio-ink. We then used extrusion bioprinting to deposit a cancerous core surrounded by stroma, thus building 3mm in diameter, and 500µm thick model. We first assessed the viability of cancer cells in this model and observed high viabilities post-printing, suggesting the process is not harmful to our cells. At D7 the viability is maintained in higher layers of the model but decreases in depth of the model. This viability gradient, indicates the appearance of a necrotic/hypoxic core in our model. We then verified endothelial cell maturation in our model, confirmed by the presence of capillary-like structures and expression of CD31 and VE-Cadherin. Lastly we evaluated model response's to treatment (paclitaxel and irradiation), demonstrating its relevance for tumor-stroma interaction study in the context of treatment. We are now evaluating paracrine communication in the model, and are expecting to integrate patient-derived cells in our model to increase their clinical relevance.

FRIEDRICH Chloé

Scientific supervisor : Michaela FONTENAY
Institute : Institut Cochin – Paris
Team : Hématopoïèse normale et pathologique

The role of the microenvironment in the pathophysiology of myelodysplastic syndromes

Myelodysplastic syndromes (MDS) are myeloid clonal disorders mainly observed in the elderly, which can evolve into acute myeloid leukemia (AML). MDS are characterized by genetic lesions affecting hematopoietic stem cells (HSC) and numerous studies have highlighted an important role of the bone marrow microenvironment (BMME) in the pathophysiology of the disease. Mesenchymal stromal cells (MSC), which constitute a key component of BMME, have the ability to develop in vivo hematopoietic niches, called human ossicles (hOss), that mimic human BMME in immune-deficient (ID) mice. Here, using MSCs from MDS and age-matched patients, we generated hOss and studied their ability to host human hematopoiesis. The objective of this project is to better decipher the relationship existing between HSC and pathological BMME in the context of MDS.

Human MSCs were isolated from bone marrow (BM) of MDS patients and femoral head (FH) of age-matched healthy patients. After an extensive in vitro characterization, normal and pathological MSC were used to generate hOss in NSG mice. Notably, we studied in hOss and murin BM, the engraftment of long-term normal hematopoiesis following the intravenous injection of human cord blood (CB) CD34+ cells. Re-

sults slight differences were observed in vitro between normal and pathological MSCs, especially with respect to the proliferation rate.

The results of RNA-Seq analysis identified candidate genes dysregulated in MDS-derived MSCs (HOXB6, HOXB7, HOXA2, HOXC10, EBP41L3, TBX15). Pathway analysis showed strong enrichment of TGFβ and senescence-related genes in MDS-derived MSCs. In NSG mice, MSCs from both origins were able to generate hOss, of equivalent weight and size, and form an intact marrow cavity. Long-term hematopoiesis (% hCD45) was detected in all generated hOss and murin BM, without major differences in term of lineage distribution. We were also able to detect human CD34+ cells in all generated hOss, with no major differences observed with respect to MSC origin. CD34+ recovered from hOss were able to give rise to colonies after 7 weeks of culture, indicating the maintenance of their strain potential. Conclusion Although MSCs from MDS and age-matched patients are different in vitro, MSCs from both origins are capable of generating hOss, both supporting normal hematopoiesis. Based on this model, we now want to study at a transcriptional level the effect of MDS hOss on normal HSCs.

HUSTIN Lucie

Scientific supervisor : Leïla PERIE
Institute : Institut Curie – Paris
Team : Physico-Chimie Curie

GenCounter, a new method to count cell division in hematopoiesis

Hematopoiesis is a continuous process throughout life that gives rise to tens of trillions of blood cells. The kinetic rates at which cells divide, differentiate and die are important regulators of blood homeostasis. However, quantitative assessment of these dynamical processes remains a challenge and impairs our ability to treat their pathological disruption such as leukemia. Among the quantitative parameters related to hematopoietic dynamics, division rate has been measured in hematopoietic stem cells (HSC) and mature blood cells showing that proliferation rates increase along differen-

tiation. However, there are no current methods to measure absolute number of divisions from a HSC to a mature blood cell. We have therefore designed a division counter, GenCounter, to quantify the number of divisions undertaken by a given cell population over months. We then validated our GenCounter design on cell lines and went on to use it on hematopoietic cells. With this GenCounter, we hope to provide the first time dynamic maps of cell population kinetics in health and disease and hopefully identify the key elements involved in this process.

JULIA Edith

Scientific supervisor : Laurent GENESTIER
Institute : Centre International de Recherche en Infectiologie – Lyon
Team : UR Lymphoma Immunobiology

Chromatin Accessibility Profiling to Increase Diagnostic Accuracy and Refine Cell-of-Origin Classification of Mature T-Cell Lymphomas

Mature T-cell lymphomas and leukemias (MTCL) are heterogeneous diseases with dismal prognosis. Differentiating between the numerous entities requires specialized pathology expertise and studies show up to 20% change in diagnosis after expert review of cases. Assay for transposase accessible chromatin sequencing (ATAC-seq) is a simple technique to profile open chromatin regions (OCR) proven to be highly discriminant for cell-of-origin identification regardless of cell activation status. We applied ATAC-seq to MTCL in order to explore the epigenetic landscape of these diverse entities, compared them to normal T-cell subtypes and built a predictive model to help diagnosis. Ten-thousand FACS-sorted single cells from primary MTCL samples and 50 µm section of frozen tumoral tissue from the TENOMIC French T-cell Lymphoma Consortium were processed according to the previously published FAST-ATAC and OMNI-ATAC protocols respectively. Concurrently we applied FAST-ATAC to different normal T- and NK-cell subsets sorted from healthy donor PBMC or lymph node suspensions. Sequencing data were processed by an in-house pipeline

to obtain matrix of insertion events in peaks by sample. In total, 678 normal and tumoral samples were sequenced to provide a comprehensive landscape of chromatin accessibility in MTCL. Epigenetic profiling by ATAC-seq of FACS-sorted tumoral samples resulted in a complete segregation of the known MTCL entities. Most PTCL-NOS (13/17) clustered with a pre-defined MTCL subtype. All but one discordant diagnosis between pathology and ATAC-seq (1/11) led to revised diagnosis after pathology review. Unsupervised clustering of normal NK- and T-cell subtypes (N=49) and sorted tumoral lymphoma cells (N=104) confirmed that AITL derive from TFH cells. HSTL and LGL closely segregated with NK- and gamma-delta T cells, in line with their known innate-like phenotype. Finally, using unsupervised deconvolution approaches, we were able to discriminate different MTCL subtypes from 223 processed bulk frozen samples. A random forest model was then trained to predict diagnosis based on chromatin accessibility profiles and viral (HTLV1 and EBV) read counts to predict diagnosis. The model showed accurate prediction performance by cross-validation.

LALETIN Vladimir

Scientific supervisor : Jacques NUNES

Institute : Centre de Recherche en Cancérologie de Marseille - Marseille

Team : Immunité et cancer

Targeting intracellular inhibiting proteins DOK1 and DOK2 to improve CD8+ T cell immunotherapy

Targeting intracellular inhibiting proteins is a promising strategy to improve CD8+ T cell anti-tumor efficacy. DOK1 and DOK2 are CD8+ T cell inhibitory proteins that are targeted in this study in order to improve the activation and cytotoxic capacities of these cells. To evaluate the role of DOK-1 and DOK-2 depletion in physiology and effector function of T CD8+ lymphocyte and in cancer progression, a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) was established. Depletion of both Dok1 and Dok2 did not affect the development, proliferation, mortality, activation and cytotoxic function

of naive CD8+ T cells. However, after an in-vitro pre-stimulation Dok1/Dok2 DKO CD8+ T cells had a higher percentage of effector memory T cells and showed an increase in levels of pAKT and pERK upon TCR stimulation. Despite this improved TCR signaling, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxicity capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. In conclusion, DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.

LIAN Yen-Ling

Scientific supervisor : Franck PEREZ

Institute : Institut Curie - Paris

Team : Biologie Cellulaire et Cancer

Synchronization of transport of Golgi glycosylation enzymes enabled a quantitative analysis of Golgi-to-ER retrograde transport

Bidirectional transport of proteins between the endoplasmic reticulum (ER) and the Golgi apparatus is essential to ensure proper localization of enzymes in these intracellular compartments enabling them to achieve their function. However, tools are missing to quantitatively analyze transport mechanisms between ER and Golgi, especially for retrograde Golgi-to-ER transport. Here we show that synchronization of Golgi-to-ER retrograde transport is enabled by combining the Retention Using Selective Hooks (RUSH) assay and artificial ligands of Streptavidin (ALiS). Using "dynamic" or "im-

mobile" ER hooks, KDEL- mediated ER retrieval and ER recycling of Golgi glycosylation enzymes was quantitatively analyzed and showed differences in their kinetics. In addition, we tested the role of the known regulators of retrograde transport, COG3 and Rab6, in these Golgi-to-ER transport routes. Finally, we demonstrated that we can get rid of working with overexpressed Golgi glycosylation enzymes and generated genome-edited cells leading to synchronization of the bidirectional transport of endogenous Golgi glycosylation enzymes.

MONROSE Mélusine

Scientific supervisor : David VOLLE

Institute : Centre de Recherche Bio-clinique – Clermont Ferrand

Team : Environnement, spermatogenèse, pathophysiologie et hérédité

Étude des rôles du récepteur nucléaire des xénobiotiques CAR (Constitutive Androstane Receptor) dans la tumorigénèse testiculaire

The incidence of testicular cancer has been progressively increasing, suggesting that exposures to xenobiotics might be in part responsible. Indeed, scientific evidence indicate that environmental exposures during the perinatal period contribute to the emergence of chronic diseases such as testicular cancer. The nuclear receptor CAR (Constitutive Androstane Receptor) has been described as a key mediator of xenobiotics. Our team has recently shown that CAR is expressed within the germ cell line in the mouse and in the human foetal testis, but its roles in the impacts of xenobiotics on testicular physiology have not been fully studied so far. However, CAR contributes to some cancerous processes such as the suppression of apoptosis in hepatocytes, what is associated with liver tumorigenesis in mice. Regarding the potential links between xenobiotics and cancers, we hypothesized that CAR could play key roles in testicular germ cell tumours processes or chemoresistance. Our unpublished data support this hypothesis since we have identified the accumulation of CAR protein in type 2 human seminoma, and the expression of CAR in a human seminoma cell line. Moreover, our data suggest that CAR is involved in the homeostasis of gonocytes,

which are thought to be the germ cells at the origin of the germ cell tumour formation. Indeed, we showed that the neonatal inhibition of CAR signalling in mice alters the gonocyte to spermatogonia transition, leading to the accumulation of ectopic germ cells within the seminiferous tubules. We demonstrated that these alterations are associated with deregulations of FOXO1 signalling and the expression of some of its target genes (CDH1 and GADD45 β), which are often associated with tumorigenesis according to the tissue. We also showed that CAR inhibition leads to the decrease of apoptosis and to the increase of cell migration in the mouse spermatogonial cell line. We also showed that the inhibition of CAR signalling in the spermatogonial cell line leads to deregulations in the expression of genes coding key epigenetic actors such as DNA methyltransferases, and to alteration of histone modifications. Yet, it is well known that modifications of epigenetic marks are frequently observed in cancers, leading to alterations of cell homeostasis, and taking part of the pro-tumour properties. These data open new perspectives on the understanding of the aetiology of testicular cancer in a context of environmental exposures.

MONTEMURRO Marianne

Scientific supervisor : Magali SUZANNE

Institute : Centre de Biologie Intégrative – Toulouse

Team : Molecular Cellular and Developmental Biology

Identification of Apoptosis and Junctional Tension as Pro-tumoral Factors in Drosophila

Cancer is a largely widespread pathology that corresponds to an overproliferation of cells that could finally invade other tissues. Tumors develop through three increasingly aggressive steps: (1) hyperplasia, corresponding to cells overproliferation without any modification of epithelial properties; (2) neoplasia, during which cells can acquire a more mesenchymal phenotype, and finally (3) metastasis, when cells leave the primary tumor, migrate and form secondary tumors. Tumor development can be influenced by mutations (or combination of mutations) but also by external factors, such as extracellular matrix rigidity. However, a comprehensive understanding of the factors driving tumor evolution is still lacking. My project aims to use *Drosophila* to identify unexpected factors that could influence tumor development, and more specifically the hyperplasia/neoplasia transition, a critical step in tumor aggressiveness. After an in-depth characterization of tumor progression at cellular level at successive timepoints, I selected two complementary genetic contexts for further analysis: a strictly hyperplastic tumor ("Yorkie overexpression" context) and an initially hyperplastic tumor that eventually evolves into neoplasia

("Avalanche loss-of-function" context). Strikingly, I identified two new and unexpected factors involved in tumor progression and aggressiveness: apoptosis and tissue tension. Indeed, while tumor aggressiveness coincides with a high level of apoptotic cells, abolishing apoptosis in Avalanche tumors strongly decreases the hyperplasia/neoplasia shift. In addition, introducing cell death in Yorkie tumors induces partial junctions' dismantling, most probably the first step of the hyperplasia/neoplasia transition. Hence, in those two different contexts, modulation of apoptosis surprisingly favors the hyperplasia/neoplasia transition. Moreover, I found that tumor aggressiveness is associated with high tissue tension and that increasing junctional tension (by modulating a Myosin II regulator or by redirecting Myosin II-GFP using a specific adherens junction trap) is sufficient to induce a hyperplasia/neoplasia transition in a tumor context normally strictly hyperplastic (Yorkie's context). Overall my work shows that in fly, adherens junctions mechanics acts in synergy with cell death to trigger the epithelial-to-mesenchymal transition associated with tumor aggressiveness.

PICANT Valentin

Scientific supervisor : Christophe CAUX

Institute : Centre de Recherche en Cancérologie de Lyon - Lyon

Team : Caux - CISTAR

Characterization of the role of interleukin-33 in Natural Killer cells activation during anti-tumor immunosurveillance

Natural Killer (NK) cells are key players in cancer immunosurveillance by directly killing tumor cells and supporting effective antitumor immune responses. However, they get progressively dysfunctional in developing tumors. A promising strategy consists in the identification of soluble factors or surface receptors that drive the activation and anti-tumor function of NK cells. The stress-induced alarmin Interleukin-33 (IL-33) activates NK in infectious models while its role in tumor contexts remains unclear. Based on the team's previous results, we hypothesized that the IL-33/IL-33R axis is a novel pathway for NK activation during tumor immunosurveillance and we investigated the activating potential of the IL-33 cytokine on healthy donors and cancer patients NK cells. First, we highlighted the importance of the dendritic cells (DC)/NK crosstalk in the IL-33R induction, with a major role of activated DC-derived cytokines, such as IL-12 and IL-15. Moreover, we observed that IL-12 and IL-15

induce IL-33R expression on different NK cell subpopulations, increasing their cytotoxicity, cytokine secretion, and proliferation in response to IL-33. RNAseq analysis reinforced that IL-33 effect is context- and NK cell subset-specific. In a pathological context, NK cells isolated from various tumor types were still able to get activated in response to IL-33 combined to IL-12 and/or IL-15 *ex vivo*. Using *in vivo* tumor models, we reported that IL-33 synergizes with DC-activating TLR agonists to limit tumor development in therapeutic settings. Finally, we observed a higher tumor growth rate and a decreased antitumoral effects of DC-activating TLR agonists in IL33KO mice compared to wild type mice, both highlighting a role for IL-33 in cancer immune surveillance. Thus, our work identifies IL-33 as a context- and subset-dependent NK cell activator that might be used to reverse intratumor NK cell dysfunctionality, paving the way to a refinement of immunotherapy targeting innate cells.

PIRIS Patricia

Scientific supervisor : Jean-Paul BORG

Institute : Centre de Recherche en Cancérologie de Marseille - Marseille

Team : iSCB

Conditional generation of free radicals by selective activation of alkoxyamines: towards more effective and less toxic targeting of brain tumors

The present work is based on the therapeutic properties of Alkoxyamines (R1-ONR2R3), molecules that can undergo homolysis to generate an alkyl radical that triggers cancer cell death and anitroxide that enhance the MRI signal. We synthesized a library of 105 new Alkoxyamines. The most efficient, *i.e.* Alk4, was selected for its ability to inhibit both the survival and migration of medulloblastoma (MB) and glioblastoma (GBM) cells. Alk4 accumulates in tumor cell cytosol after 2h of treatment and released alkyl radicals, which triggered the generation of ROS, fragmentation of the mitochondrial network and finally apoptosis. To control the homolytic process, Alk4 was then bioconjugated to a peptide selectively recognized by the matrix metalloproteinases (MMPs), which are over-

expressed in the microenvironment. The bioconjugated Alk4-MMPp successfully inhibited proliferation and invasion of GBM and MB 3D spheroids, while Alk4 bioconjugated to achymotrypsin-targeted peptide remained inactive. To further characterize Alk4-MMPp benefits we developed an innovative organotypic model based on the graft of stably fluorescent GBM or MB spheroids in *ex vivo* mouse brain or cerebellum slices. The daily monitoring of response to treatment confirmed that Alk4-MMPp significantly impaired tumor progression, while no significant damage to the healthy tissue was observed. Our work paves the way to the controlled use of Alkoxyamines in MB and GBM, the most frequent intracranial tumors in children and adults respectively.

POTEAU Marion

Scientific supervisor : Olivier GAVET
Institute : Gustave Roussy - Villejuif
Team : Genome integrity, immune response and cancer - Cell Division and genetic stability

CyclinA2 overexpression: consequences on genetic integrity and cell outcome

CyclinA2 is a master cell cycle regulator required for both DNA replication during S phase and timely commitment to mitosis. CyclinA2 has been found to be over-expressed in various human cancers associated with a poor prognosis. Yet, the potential contribution of its overexpression in tumorigenesis remains to be characterized. Here, we aimed to decipher the consequences of CyclinA2 overexpression (OE) on the regulation of the cell cycle and on the maintenance of the genetic integrity. For this purpose, we generated human stable cell lines conditionally overexpressing CyclinA2 WT (wild-type) or an inactive form, in both p53 proficient or deficient contexts. We found that CyclinA2 WT OE promotes a premature entry into S phase accompanied by a de-

crease in the density of active replication forks and fork speed progression, as determined by DNA molecular combing assays, leading to replication stress and over-activation of ATR/Chk1-dependent DNA replication checkpoint. As a consequence, we found increased under-replicated regions at mitosis and chromosome breaks, favouring incorrect chromosome segregation and the appearance of micronuclei in the progeny. In a p53-deficient background, this progressively leads to the accumulation of aneuploid cells. Together, our results support that CyclinA2 OE, specifically in a p53-deficient context, contributes to the establishment of a genetic instability, a typical feature of pre-neoplastic lesions.

REYNAUD Amandine

Scientific supervisor : Antoine DUCLOS
Institute : Centre Léon Berard - Lyon
Team : RESHAPE

Supportive care needs of former child, adolescent and young adult cancer patients, and of their parents: Evaluation during long-term follow-up

Each year, there are 2100 new cases of cancer in children and adolescents/young adults in France. Due to a significant improvement in the effectiveness of therapies, the combined survival rate after 5 years is 80-85%. This is leading to the emergence of new problems, requiring an adaptation of the long-term care. Many studies highlight that 60 to 65% of pediatric oncology patients will present medical and/or psychosocial complications in the 20 years following their oncological treatment, with a cumulative incidence of a serious adverse event of 40% 30 years after the cancer diagnosis. It is therefore necessary to identify the risk factors by determining the expectations and the supportive care needs of patients and their caregivers in the long-term follow-up in order to intervene early and thus reduce the incidence of these later complications. Despite a growing need and existing recommendations, patients do not seem very committed to the different structures offered in France. It is possible that some patient needs are currently not sufficiently known and met, or not early enough. Only 30 to 50% of former patients attend a long-term follow-up medical consultation. We hypothesize that this

lack of commitment is multifactorial (e.g. unmet supportive care needs, geographical distance from home, lack of information about the importance of long-term follow-up and follow-up structures nearby) and that a precise study of the needs expressed by former patients and their family should lead to an improved attendance at these consultations. "Supportive care needs (SCN)" refer to issues that may or may not be ultimately resolved. Thus, a SCN may be labeled "unmet" when the supportive care required to deal with the particular problem is not received. These "unmet" supportive care needs should provide additional information about the gaps in the support given by health professionals. This information could then be used to prioritize the missing resources. As a result, the concept of "unmet SCN" is of interest to institutional decision-makers, clinicians and researchers. A better understanding of the supportive care needs of these patients and their families is therefore essential to improve their quality of life, prevent or detect the sequela of therapies and reduce the risk of morbidity/mortality during the long-term care.

SAOUT Judikael

Scientific supervisor : Michael SAMSON

Institute : Institut de Recherche Santé, Environnement et Travail - Rennes

Team : Physiologie et physiopathologie du tractus urogénital

Study of intra-tumor heterogeneity and impacts of anti-cancer drugs in clear cell renal cell carcinoma using single-cell transcriptomics approaches

Intra-tumor heterogeneity (ITH) in clear cell renal cell carcinoma and other malignancies is partly responsible for tumor progression, relapse and tumor escape. One of the challenges of cancer research today is to uncover and characterize this ITH in order to take advantage of it in the treatment of patients. Single-cell RNA sequencing (scRNA-seq) has become the method of choice to decipher ITH by simultaneously profiling the individual transcriptome of thousands of cells from a dissociated tumor. In this project, the first objective is to use single-cell RNA-seq in ccRCC in order to build a single-cell malignancy atlas and better risk-stratify ccRCC patients. In this respect,

we uncovered various degrees of inter- and intra-tumor heterogeneity in malignant cells across multiple tumors and were able to link particularly aggressive malignant clones to survival in a massive cohort using deconvolution approaches, which provides new avenues for personalized medicine and patient management. A second objective was to study the impacts of anti-cancer drugs on ITH in ccRCC 3D culture models. Ongoing work already provides a proof of concept for the implementation of a multiplexed screening strategy, and evidences that cellular subpopulations appear to be differentially impacted by antiangiogenic therapies.

SCHIRMEISEN Kamila

Scientific supervisor : Sarah LAMBERT

Institute : Institut Curie - Orsay

Team : Recombinaison de l'ADN, réplication et stabilité du génome

SUMO-dependent nuclear positioning safeguards replication fork integrity and competence

Resolving replication stress, which is a major source of genome instability and fuels cancer development, occurs within a compartmentalized nucleus with distinct DNA repair capacities. Replication fork (RF), when its progression is impaired, may shift to the nuclear periphery for anchorage to nuclear pore complexes (NPCs), where specific types of homologous recombination (HR) pathways take place. This nuclear positioning is regulated by small ubiquitin-like-modifier (SUMO) metabolism. Distortion of SUMO equilibrium has been reported in a variety of human diseases including cancer. For example, SUMO protease SENP1 is overexpressed in many cancer types, including thyroid adenocarcinoma, breast cancer and prostate cancer. However, how deregulated SUMO metabolism influences the maintenance of genome integrity at replication stress sites is poorly investigated. Using replication fork barrier (RFB) in fission yeast *Schizosaccharomyces pombe*, I have found that monoSUMOylation and the

E3 SUMO ligase Pil1(hsPIAS1) catalytic activity are necessary to protect arrested RF from excessive nascent strand degradation when RF failed to relocate to the nuclear periphery. I have also established two functions of the nuclear basket, the nuclear part of NPCs: a Nup60-mediated function in promoting replication fork restart via Ulp1, as described for the Ycomplex, and a Alm1-mediated function in anchoring arrested forks to NPCs. Furthermore, I have observed that the lack of anchorage to NPC correlates with the formation of unprotected forks (the degradation of nascent strand becomes excessive) when Ulp1 is delocalized from the nuclear periphery. Interestingly, I found that the artificially tethering of arrested forks to NPCs was sufficient to restore fork protection. Together with additional data, I hypothesize that aspatially segregated SUMO metabolism between the nucleoplasm and the nuclear periphery is a key determinant of replication fork integrity and competence.

SEBA Mohammed

Scientific supervisor : Frédéric BOCCARD

Institute : Institut de Biologie Intégrative de la Cellule – Gif-sur-Yvette

Team : Conformation et ségrégation du chromosome bactérien

The role of MukBEF, in *Escherichia coli* chromosome conformation

The structuring of DNA into chromosomes is still poorly understood. Indeed, while many molecular players have been identified from bacteria to humans, their involvement in the organization and segregation of chromosomes, or the regulation of gene expression, remains to be understood. Among these essential players, the SMC (structural maintenance of chromosome) complexes are universally present in living beings. The study of these SMCs, involved in the genesis of many cancers (for review: *Nature Reviews Cancer* 2020 504–515T. Waldman), can be facilitated by using bacterial systems which have a simpler chromosomal environment (1 single chromosome) and whose deletion of these genes is not lethal. MukBEF is a bacterial condensin of *Escherichia coli* responsible for chromosome segregation, and conformation; in its absence, the bacteria are no longer capable of rapid growth, but can nevertheless survive and multiply at 22°C, generating numerous cells

without DNA. Using chromosome conformation techniques, we showed that MukBEF promotes long-range DNA contact (about 1Mb) all along the chromosome except in the particular Ter domain (VS Lioy et al., 2018). The organization of the Ter domain relies on the presence of a 13 bp motif (matS) repeated 28 times in the 800kb long domain bound by MatP. We previously showed that the matS/MatP system inhibits MukBEF activity. Here we characterized the loading preferences of MukBEF and the determinants of the inhibition by MatP. To do so, we followed the activity of MukBEF after induction and we modified the distribution of the matS on the chromosome. Our results show that MukBEF is loaded in a nonspecific way on the chromosome. The inhibition of MukBEF by MatP/matS system is accompanied by a loss of interaction of MukBEF with the chromosome, suggesting a mechanism of MukBEF unloading by MatP.

THOMAS Morgane

Scientific supervisor : Eric PINAUD

Institute : CRIBL – Limoges

Team : B-NATION

MAR binding protein functions in nuclear organization and genome integrity of B cells

B cells undergo genetic remodeling of their Immunoglobulin (Ig) genes, such as Class Switch Recombination (CSR), which determine Ig function and Somatic Hypermutation (SHM), which increase Ig-antigen affinity upon antigen stimulation. As CSR and SHM lead respectively to DNA double strand and single strand breaks, these mechanisms must be under precise control. Alteration in CSR and SHM can lead to illegitimate recombination or mutation that can cause tumor development. For a meticulous control of such events, the IgH locus contains different cis-regulatory regions such as the intronic region E μ . This regulator brings together a Core-E μ enhancer region and two Matrix Attachment Regions (MARs E μ). Our team discovered that MARs E μ regions are involved in SHM since their deletion in the mouse leads to a decrease of SHM frequency.

The mechanism linking MARs E μ to SHM is unclear, but we suspect some MARs binding protein (MARs BP) to be involved; such as ARID3A (A-T Rich Interaction Domain) & SATB1 (Special A-T rich Binding protein 1). Since these two MARs BP are involved in multiple tumor development, it should be interesting to study their effect on genetic remodeling mechanisms in B-lineage cells. Our preliminary data show that SATB1 could repress SHM. Indeed, its deletion induces an increase of SHM frequency. Our data also suggest a function for ARID3A but in contrast to SATB1, ARID3A might enhance SHM and plasma cell differentiation. Understanding the exact implication of MAR BP is in these processes could help to specify their function in cancer development, especially in B-cell lymphoproliferations.

TIGHANIMINE Khaled

Scientific supervisor : Mario PENDE
Institute : Institut Necker Enfants Malades - Paris
Team : Cell growth control by nutrients

Multi-omics approach across different senescence models reveals common senescence metabolic signature and possible interventions on senescence-related disorders

Senescence is an irreversible cell cycle arrest that can be triggered by different stress, including oncogenes, DNA replication and telomere erosion, DNA damage. This makes senescence one important tumor-suppressor mechanism. In addition, senescent cells display a wide secretory phenotype of inflammatory molecules, called Senescence-Associated Secretory Phenotype (SASP), that can promote tumorigenesis in a paracrine fashion and play deleterious role in aging. Accordingly, this secretion activity maintains senescent cells metabolically active. To elucidate the metabolic adaptations of senescent cells, we identified by LC/MS analysis a metabolic signature that is common to all senescence models. We called it Senescence-Associated Metabolic Shift (SAMS). Strikingly, all these markers were repressed when senescence was delayed by pharmacological treatments, such

as the mTOR inhibitor rapamycin and the HIF hydroxylase inhibitor Dimethyloxalylglycine (DMOG). Of note, we revealed that two metabolic pathways at the intersection of triglyceride accumulation and phospholipid synthesis were affected in senescent cells. We were able to confirm lipid alterations in senescent cells by lipidomic analysis. We elucidated the molecular causes underlying the lipid signature of senescent cells. Interestingly, p53 seems to coordinate both transcriptional and post-translational modifications of enzymes involved in lipid metabolism. Overall, our data reveal the pathways at the intersection of triglyceride accumulation and phospholipid synthesis that play a causal role in senescence establishment and inflammation and give new insights for therapeutic strategies for senescence-mediated tumor suppression.

WILLIART Alice

Scientific supervisor : Mathieu PIEL
Institute : Institut Curie - Paris
Team : Biologie systémique de la polarité et de la division

Consequences of mechanical deformations of the nucleus

In the body, cells are often subjected to mechanical constraints and can undergo large deformations. This can occur when cells move through dense tissues or capillaries, or often during tumor development. When the cell deforms, its nucleus, as its largest and stiffest organelle, is also subjected to deformation, up until loss of nuclear envelope integrity and rupture. Using a 2D confinement device, we can *in vitro* impose a range of controlled heights to the cells, alter their mechanical state and that of their nucleus, and study the consequences of deformations. The mechanical deformation of the nucleus is associated with changes in the state of the nuclear envelope. Non-adhered, non-confined cells have nuclei which display large folds that gradually open upon confinement. This is associated with a decrease of NE fluctuations, which we interpret as an increase in NE tension (Lomakin et al., 2020). We show in three different cell lines that the nucleus follows two regimes depending on the deformation magnitude. Under mild confinement, the nucleus deforms at constant volume. At the same time, the amplitude of NE fluctuations decreases until reaching a plateau at a certain

threshold height. This is associated with NE unfolding. Below this threshold, the nuclear volume decreases by up to 50%. We propose that the first regime defines a "safe" deformation range, with a constant volume and hence a preserved chromatin density. Below a threshold, an altered regime begins, in which nuclear volume and thus physiology starts to be affected, with different cell lines switching to the perturbation regime at different levels of deformation. The volume of the nucleus has been shown to be related to the cell volume, in many different organisms, for reasons which are still debated. Our results suggest that it also depends on mechanical constraints. We are currently collaborating with physicists who developed a theoretical model based on mechanical and osmotic equilibrium to predict the volume of the nucleus and the state of the nuclear envelope depending on the osmolarity of the external medium and the deformation of the cell. The model predicts a key role for the mechanical contribution of the NE and its capability to extend, underlining the potential role of mechanical constraints in cellular and nuclear responses.

ZIDI Nour

Scientific supervisor : Lionel LARUE

Institute : Institut Curie - Orsay

Team : Développement normal et pathologie des mélanocytes

Role of recently identified targets of β -catenin in the cellular functions of the melanocyte lineage

The Wnt/ β -catenin signaling pathway plays a key role during embryonic development, homeostasis and cancer. The role of β -catenin in melanocyte lineage establishment and homeostasis has been elucidated, but its role in melanoma remains poorly defined. In particular, its function in cell invasion is controversial. Especially, we generated a signature of β -catenin activation to emerge proteins of interest including known β -catenin target genes (AXIN2, APCDD1, NKD1, SP5, NOTUM, ZNRF3, CCND1 and PPARD) and new genes (SLC1A5, SLC7A11, SLC24A4 and MICAL2). Our signature gene most correlated with invasive cells is MICAL2. MICAL2

oxidizes actin filaments, destabilizes them, and modifies the migratory power of cells. In melanoma cell lines, reduction or induction reduces or increases the level of MICAL2, respectively. Decreasing the level of MICAL2 reduces migration, invasion and cell growth. Finally, a significantly unfavorable evolution for the patient is associated with strong expression of MICAL2 and its invasive power. In conclusion, the identification of a transcriptional signature of β -catenin activation in melanoma is an important step toward understanding the role of β -catenin during melanogenesis. MICAL2 which is pharmacologically targetable is an example.

ZOUIOUICH Mehdi

Scientific supervisor : Catherine TOMASETTO

Institute : Institut de Génétique et de Biologie Moléculaire et Cellulaire - Illkirch

Team : Biologie moléculaire et cellulaire des cancers du sein

Role of MOSPD2-mediated membrane contact sites in cancer

Lipid droplets (LDs) are dynamic storage organelles, which play a key role in the deregulation of cancer cell metabolism. Our laboratory recently identified a major player in the formation of contacts between the endoplasmic reticulum (ER) and other cellular organelles, a protein named MOSPD2 (Motile Sperm Domain-containing protein 2). Interestingly, data from the literature implicate MOSPD2 in breast cancer tumour progression. I have recently identified a unique function of MOSPD2 which is to form contacts between the ER and the LDs. My thesis project aims to identify the role of MOSPD2 in the deregulation of lipid metabolism via LDs

and its impact on the migration properties of cancer cells. My hypothesis is that MOSPD2 enables the formation of contact sites between the ER and LDs and could transport lipids to promote LD biogenesis. So far, I have shown that MOSPD2 promotes the formation of ER-LD contacts by interacting directly with the surface of LDs and that loss of MOSPD2 expression leads to a decrease in LD size and number. The fourth year of the thesis will clarify the molecular mechanism of action of MOSPD2 in ER-LD contacts and study the mechanism involving MOSPD2 in tumour cell migration.

26^e Journées Jeunes Chercheurs en Cancérologie

Prix Hélène Starck Poster

Catégorie Post-Doctorat

DURAND Simon

Scientific supervisor : Julie CARMEL

Institute : Centre de Recherche en Cancérologie de Lyon – Lyon

Team : Cancer cell plasticity in melanoma

The epigenetic regulators RBBP5 and TRIM24 sustain phenotype plasticity of melanoma cells

Metastatic melanoma is a highly aggressive type of skin cancer, the treatment of which has been recently revolutionized with the advent of targeted therapy (BRAF/MEK inhibitors) and immunotherapy (anti-PD1). However, about fifty percent of patients still develop resistance. Therapy failure is partly due to an exacerbated cancer cell plasticity characterized by a phenotype switch between a proliferative/differentiated and an invasive/stem-like state. Epigenetic alterations have been proposed to account for the rapid adaptation of melanoma cells to treatment. We performed *in silico* analysis on multiple melanoma datasets to highlight epigenetic regulators frequently mutated with an altered expression. We then investigated the role of two candidates, namely, RBBP5 and TRIM24, in melanoma phenotype switching and oncogenesis. RBBP5 is a core subunit of the Histone Lysine Methyltransferase 2 complex (KMT2, or MLL) family while TRIM24 is a transcription co-regulator recognizing histone marks. These two epigenetic regulators have never been studied in the context of melanoma plasticity.

RBBP5 and TRIM24 expression were knocked-down separately by a shRNA approach in patient-derived melanoma short-

term cultures. Molecular analyses (RNA sequencing, quantitative PCR, immunoblotting, flow cytometry) as well as functional assays (IC50 with BRAF inhibitors, incucyte and migration assay, protein degradation using PROTACs) were performed.

RNA-sequencing analyses highlight an enrichment of neural crest-like, invasive and EMT signatures in the RBBP5 knocked-down cells. RBBP5 knock-down notably induces a loss of expression of melanocytic markers (MITF, SOX10) in favor of neural-crest markers (NGFR, AXL). Furthermore, functional analyses show that RBBP5 knocked-down cells display increased migratory capacities and resistance to BRAF inhibitor. On the opposite, the downregulation of TRIM24 induced cell differentiation with increased expression of melanocytic markers associated with both a higher sensitivity to BRAF and a decreased migratory capacity. Together, these studies suggest that epigenetic regulators control melanoma cell plasticity, with RBBP5 and TRIM24 controlling an opposite path of differentiation. This work paves the way for the development of new therapeutic strategies targeting phenotype plasticity to sensitize melanoma cells to treatment.

FABBRI Lucilla

Scientific supervisor : Stephan VAGNER
Institute : Institut Curie - Orsay
Team : RNA Biology, signalling and cancer

Investigating the role of mRNA translation in cancer cell mutability

The control of mRNA translation plays a key role in cancer cell plasticity, a main driver of resistance to anticancer therapies. The ability of cancer cells to reversibly transition into drug-tolerant phenotypes through non-genetic mechanisms is an important contributor of therapeutic failure. These drug-tolerant persister cells constitute a reservoir for the development of genetic acquired resistance cells and drive relapse. Our previous results identified an mRNA translation remodeling as the mechanism exploited by BRAF-mutated melanoma persister cells to transiently survive targeted therapy. Some m6A-modified mRNAs, essential for persister cell survival, maintained efficient translation despite a global reduction of protein synthesis. In particular, while mRNAs encoding proteins involved in accurate DNA repair were translationally downregulated, the translation of the mRNA encoding 53BP1, a key mediator of the error-prone non-homologous end-joining (NHEJ) repair pathway, was found to be selectively upregulated. By focusing on 53BP1, we show that its translational upregulation is associated with the persistence state of different melanoma and colorectal cancer cells upon targeted therapy as well

as with an increase of DNA damage. This correlates with a bias towards NHEJ and an increase of 53BP1-dependent mutagenesis in persister cells. To have insights into the link with its translational upregulation, we have firstly interrogated the role of the 5'UTR. Using dedicated reporter plasmids, we show that the 53BP1 5'UTR is sufficient to drive the translation upregulation of 53BP1 in persister cells. We are currently investigating the molecular mechanisms underlying the translational upregulation of the 53BP1 mRNA in persister cells that may offer a promising therapeutic opportunity to counteract the insurgence of genetic resistance. Our studies point towards proposing that 53BP1 and, specifically, the translation regulation of its mRNA, would be a mediator of the transition from drug-tolerant persistence into permanent genetic resistance by favoring NHEJ and persister cells mutability. In addition, in melanoma biopsies, we show that 53BP1, together with other translational co-regulated proteins found in persister cells, may constitute a predictive marker of response to targeted therapy. This potentially highlights the importance of the control of mRNA translation in a clinical setting.

MAROTTE Lucine

Scientific supervisor : Bernard MALISSEN
Institute : Centre d'immunologie de Marseille-Luminy - Marseille
Team : Biologie intégrative des lymphocytes T et des cellules dendritiques

Optimizing the potency of adoptively transferred tumor-specific human T cells via system-levels analysis of their immune checkpoint signalosomes

Adoptive cell transfer (ACT) therapies are constantly evolving, seeking to combine increased specificity of injected cells with optimized functional properties. Along that line, genomic editing techniques of immune checkpoints (IC) intend to increase the anti-tumor efficacy of injected T cells. Accordingly, the team of Dr. Labarriere (IN-CIT, Nantes, France) in which I did my thesis, had designed a method for selection and amplification of melanoma-specific CD8+ T cells from patient blood which had been used in a clinical trial (MEL SORT, NCT02424916). Then, we have produced tumor-specific human effector memory CD8+ T cells unable to express inhibitory receptors PD-1 and TIGIT, alone or in combination using CRISPR/Cas9 system. PD-1KO clones obtained were characterized in terms of phenotype, function and transcriptome, and TIGITKO T cell clones are currently being characterized. The study of PD-1KO T cell clones allowed us to highlight changes in TCR activation and TIGIT expression compared to their WT counterparts. Therefore, prior to the use of such T cell clones in therapy, additional information must absolutely be provided, notably on the conse-

quences of inactivation of one or more ICs on TCR signaling and T cell effector functions. We are currently attempting to answer these questions using expertise developed in the Dr. Malissen's team. More specifically we used CRISPR/Cas9-based mechanism insertion, of a One-STrep tag at the extremity of key proteins involved in activation and TCR signaling to characterize the interactomes of the targeted proteins by Affinity Purification and Mass Spectrometry. We therefore began to characterize TIGIT interactome signaling in human effector memory CD8+ T cells and will compare it to the TCR interactome of different types of T cell clones lacking PD-1 and/or TIGIT. This study – which bypasses the use of mouse models – aims to provide a rational basis for improving the efficacy and resistance to exhaustion of the adoptively transferred tumor-specific T-cells. Although the project focuses on TIGIT and PD-1, the simultaneous inhibition of which is currently used in cancer immunotherapies, it will provide an integrative approach that can be generically used to decipher the function and functional cross-talk of the ever-growing list of ICs in therapeutic T cells.

MONTEAGUDO SÁNCHEZ Ana

Scientific supervisor : Max GREENBERG

Institute : Institut Jacques Monod – Paris

Team : Chromatin Dynamics in Mammalian Development

Investigating the impact of DNA methylation on chromatin topology and gene regulation during epigenetic reprogramming

DNA methylation is an epigenetic mark typically associated with transcriptional silencing. During the early stages of mammalian development, most of the parental epigenetic information, including DNA methylation, is erased. Subsequently, during implantation, de novo DNA methylation occurs via action of the DNMT3A and DNMT3B enzymes. This period is accompanied by profound changes in the chromatin and transcription landscapes as the embryo prepares for lineage commitment. These changes are accompanied by alterations to the 3D structure of the genome, which can both facilitate and insulate cis-regulatory interactions. I aim to investigate how de novo DNA methylation affects chromatin architecture during this transition via altered CTCF binding. CTCF, a DNA-binding protein that helps generate DNA loop structures, is DNA methylation-sensitive at a subset of its targets. Importantly, embryonic dynamics are recapitulated *in vitro* using WT and Dnmt triple knockout (tKO) mouse embryonic stem cell lines, the latter being completely devoid of DNA methylation. To identify DNA methylation sensitive

CTCF binding sites we compared the CTCF binding profiles in WT and tKO cells and found ~300 DNA methylation-sensitive sites. I am currently performing genome-wide chromosome conformation assays in WT and tKO to determine whether DNA methylation at CTCF binding sites impacts promoter-enhancer interactions. Integrated analysis of RNA-seq data will determine whether impaired enhancer-promoter looping results in aberrant gene expression. For those affected genes, site-directed genome editing tools will be targeted to candidate CTCF sites in WT cells to directly characterize the impact of the methyl mark on CTCF binding, expression and chromosome conformation. This research will allow us to discover a non-canonical role of DNA methylation-mediated gene regulation that could be critical for proper developmental progression. We also believe we will identify transcripts regulated by DNA methylation-sensitive CTCF binding sites—critical for development and for cancer biology, where DNA methylation and genome organization are broadly misregulated.

NAJAFI Javad

Scientific supervisor : Nicolas MINC

Institute : Institut Jacques Monod – Paris

Team : Cellular Spatial Organization

Hydrodynamics of bulk cytoplasm and division positioning

Many studies of cytoplasm mechanics have focused on small components at the scale of proteins and macromolecular complexes. However, the cytoplasm also baths large organelles like nuclei, microtubule asters or mitotic spindles that often take significant portions of cells and need to move across the cytoplasm to regulate cell division or polarization. Here, we address how cytoplasm fluid mechanics impact the motion and positioning of large organelles in cells. We implemented magnetic tweezers to move with calibrated forces, spindles or passive large oil droplets in the cytoplasm of living cells. We found that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys' material, viscoelastic at short time-scales

and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a non-monotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing, cellular organization and division.

TRAN NGUYEN Viet Khoa

Scientific supervisor : Pedro BALLESTER

Institute : Centre de Recherche en Cancérologie de Marseille - Marseille

Team : Apprentissage Automatique pour l'Oncologie de Précision et la Conception de Médicaments

Machine-learning scoring functions for structure-based virtual screening applied to cancer targets

This project considers the available biological activities, chemical ligand structures and protein structures for a considered cancer target. The most suitable algorithms to generate the most predictive computational models for virtual screening on that target are determined. These models will be constructed using machine learning, which represents a form of artificial intelligence that can ameliorate virtual screening performance by exploiting the fast growing amount of data for most targets. A user-friendly and publicly-available protocol implementing this cutting-edge methodology will be made available, so that other researchers can also apply it to their targets. In the scope of this project, the protocol will be followed to build models specific to BET (Bromodomain and Extra-Terminal domain) proteins. This is a protein family that includes four members, namely BRD2, BRD3, BRD4 and BRDT. A BET protein has two bromodomains (BD1 and BD2), each with over 80% sequence identity across the family members. The goal is to design potent

small-molecule binders of the BD1 domain of each BET protein in order to inhibit its interaction with chromatin. A current challenge in this area is selectivity: none of the current inhibitors in the clinic has at least 10-fold selectivity over the other members of the BET family for the BD1 domains. This is important, as BET-selective inhibitors would be less toxic than pan-BET inhibitors. An exciting opportunity to make progress in this area is building BET-specific machine learning scoring functions exploiting the relatively large volume of data that has been accumulating for these targets. Since generic machine learning scoring (using data from all targets) have already shown significant improvements over classical scoring functions, tailoring them to be BET-specific is expected to lead to even better results on each BET target. This project will enable the direct discovery of potent, selective and diverse BET inhibitors among the 750 million purchasable compounds in the ZINC database.

26^e Journées Jeunes Chercheurs en Cancérologie

Posters Hors concours

GABER Mohammed

Scientific supervisor : Pierre VIDI (France) - Katherine Cook (USA)

Institute : Institut de Cancérologie de l'Ouest (France) / Wake Forest University (Etats-unis) - Angers / Winston-Salem

Team : InGeno & Cook's lab

The Microbiome Mediates Carcinogenic Alterations of the Mammary Gland in the Context of Obesity

Obesity increases the relative risk for breast cancer incidence. Multiple molecular mechanisms linked to obesity drive breast cancer progression. However, if and how obesity contributes to breast cancer initiation is poorly understood. Obesity shifts the microbiome in ways that may increase breast cancer risk. Microbial-associated molecular pattern (MAMP)-proteins and metabolites could directly affect breast epithelial cell signaling. In this study, we focused on lipopolysaccharide (LPS), a toll-like receptor 4 (TLR4)-agonist. LPS levels are known to increase in obesity. We hypothesize that chronic low-grade inflammation caused by LPS contributes to breast cancer initiation. To test this hypothesis, we first quantified levels of LPS, along with a panel of adipokines/cytokines, in serum samples from women with different body mass indices (BMI). Donors with high LPS had significantly higher BMI, leptin, and leptin:adiponectin ratio, confirming a link between systemic LPS and metabolic markers of obesity. LPS levels also correlated

with pro-inflammatory cytokines such as IL-8. Other biomarkers of breast cancer risk include DNA damage. Analyses of normal breast tissue sections from the same donors revealed higher densities of DNA double-strand breaks (estimated based on 53BP1 foci counts) in women with high serum LPS. Experiments with 3D culture of breast acini showed that LPS increases DNA break frequencies and oxidative stress levels in the mammary epithelium. We also found with this 3D culture system that LPS disrupts epithelial polarity, a hallmark of breast tissue homeostasis. Preliminary data show that LPS activates the nuclear factor-kappa B (NF κ B) pathway by binding to the TLR4 receptor, leading to an increased expression of inflammatory cytokines such as tumor necrosis factor-alpha (TNF- α). Interestingly, TLR4 blockade prevented the loss of apical polarity and DNA damage induced by LPS. The outcomes of our study underscore the importance of considering the microbiome in the prevention of breast cancer.

HASHEMKHANI Mashid

Scientific supervisor : Florence GAZEAU

Institute : MSC-Med (Laboratoire Matière et Systèmes Complexes) - Paris

Team : Biofluidique

Luminescence nanothermometry for the control and understanding of heat-induced process in biological applications

Temperature is one of the most common physical quantities and contributes greatly to mechanical resistance, chemical reactivity, and biological processes. The pitfalls of temperature readouts are mostly represented by the currently achievable spatial resolution which is too low for nanotechnology and nanoscience requirements. To address key issues, such as intracellular temperature fluctuations and in vivo thermal transients, a technique able to go below 1 μ m urgently needed, as the traditional contact-based sensors and near infrared thermometers are not suitable for measurements at that tight spatial range. To overcome these limitations, a non-contact thermometry approach granted with high temporal and spatial resolution called nanothermometry has been recently achieved, and also providing real-time high relative thermal sensitivity values.

The goal is to develop a reliable, reproducible, and cost-effective nanothermometry method for applications involving hyperthermia. The objective is to measure the local temperature close to nanopar-

ticles (NPs) heated by a laser. We synthesized nontoxic Ag₂S luminescent NPs, to work in in situ and operando environmental conditions (biological compartment, chemical reactor...), and second to allow a non-contact measurement of temperature compatible with hyperthermia application. The temperature-dependent luminescence of NPs was measured using a system to measure the emission ratio and/or decay profiles versus temperature which is applicable for both cells and solution. The effective delivery of that major advance in thermal bioimaging will be implemented through two impactful biomedical showcases: highly spatially-modulated intracellular hyperthermia and detection and tracking of cancer in vitro and in vivo.

In the long-term, we foresee our technology having a broad impact on non-invasive clinical imaging and theranostics. For instance, the accurate measurement of temperature gradients' sources will be an invaluable tool for real-time control of thermal therapies, thus making them harmless for the patient.

IMERZOUKENE Ghiles

Scientific supervisor : Jacques LE SEYEC & Marie-Thérèse DIMANCHE BOITREL
Institute : IRSET – Rennes
Team : Infection, immunité, facteurs environnementaux et foie

Role of the pseudokinase MLKL in the development of NASH-HCC

The rising incidence of hepatocellular carcinoma (HCC) is driven by the growing epidemic of fatty liver disease. During non-alcoholic steatohepatitis (NASH), a self-perpetuating cycle of cell death and inflammation promotes chronicity leading to cancer. Necroptosis is a form of programmed cell death executed by the mixed lineage kinase domain like pseudokinase (MLKL). After its oligomerization to form pores at the plasma membrane, the necroptotic cell releases damage-associated molecular patterns (DAMPs) fueling the inflammation. Although MLKL has been associated with certain cancers, its involvement in HCC occurring in the context of NASH remains to be defined. To test this hypothesis, male mice genetically modified to specifically prevent MLKL expression in liver parenchymal cells (Mlk1Lpc-KO), in parallel with their wild-type littermate controls (Mlk1fl/fl), were subjected to an experimental protocol

reproducing the pathogenesis observed in humans. Thus, pups, exposed to streptozotocin to induce hypoinsulinemia, were fed as adults with a high-fat high-sugar diet (HFHSD) for 4, 8 or 12 weeks. Clinical monitoring of mice showed that the lack of MLKL in liver parenchymal cells did not affect the onset of liver damage, steatosis and fibrosis. However, Mlk1Lpc-KO mice displayed a slower evolution of their splenomegaly and also of the appearance of intrahepatic nodular lesions. Furthermore, the number and size of visible nodules and tumors on the surface of the livers from Mlk1Lpc-KO mice were lower. Likewise, their livers had a lower density of glutamine synthetase-positive tumors. In conclusion, our data suggest that MLKL, potentially by activating necroptosis, contributes to carcinogenesis during NASH, revealing a probable pro-tumoral function of this pseudokinase.

RUGGIU Mathilde

Scientific supervisor : Philippe BOUSSO
Institute : Institut Pasteur – Paris
Team : Équipe Dynamique des Réponses Immunes

PD-1 blockade promotes the priming of tumor-specific CD8+ T Cells in the tumor draining lymph node

PD-1 blockade is a powerful immune check-point inhibitor used in many oncologic and haematologic malignancies. PD-1 blockade induces re-invigoration of exhausted T cells but there is some indirect evidences that it could have extratumoral activity. Our aim is to investigate PD-1 blockade action in tumor draining lymph node. We demonstrated that PD-1 blockade promotes tumor specific T cell mobilization, activation and proliferation in tumor draining lymph node.

Here, we identified that PD-1 blockade induced endogenous tumor-specific CD8 T cells accumulation in tumor draining lymph node. We highlighted a global lymph node swelling with mobilization of all immune cell types that we demonstrated to

be dependent of type I interferon. Moreover, in draining lymph node, PD-1 blockade improved quality of tumor-specific CD8 T cell activation: activation markers expression, capacity of cytokine secretion, notably pluri-functionality, and long CD8 T cells / dendritic cells interactions visualized by intra-vital imaging. Then, we demonstrated that PD-1 blockade enhanced tumor-specific CD8 T cells proliferation in draining lymph node that was associated with a reshape of T cells cytokine/chemokine landscape.

Our findings reveal that in addition to its activity in tumor micro-environment, PD-1 blockade has a direct action in tumor draining lymph node that enhances tumor-specific CD8 T cell priming.

WATZKY Manon

Scientific supervisor : Benoit MIOTTO
Institute : Institut Cochin - Paris
Team : Epigénétique, réplication de l'ADN et cancer

Dissecting the functions of Hexokinase 2 in cancer: from cell metabolism to the regulation of oncogenicity and stemness features

Elevated glucose uptake and aberrant expression of several glycolytic enzymes have been described as hallmarks of cancer. These alterations are often correlated with cancer aggressiveness, chemotherapy resistance and metastasis occurrence. Numerous studies have shown that overexpression of Hexokinase 2 (HK2), that fuels cells with metabolites required for proliferation and dissemination, is key in these processes. For instance, its deletion impairs tumour growth in mice models and its depletion in human cells blocks cell proliferation. HK2 is a promising target for cancer therapy but inhibitors of its catalytic activity have not been proven efficient and safe in trials. There is thus a need to better describe HK2 function(s) and its downstream targets in cancer cells to find new ways to block its action. Our project addresses this issue.

We demonstrated that stable HK2 overexpression in poorly tumorigenic bone cancer cells is sufficient to increase tumorigenic features. HK2 overexpressing cells acquired the ability to form colonies and to proliferate in an anchorage-independent manner and grow bigger tumours masses when engrafted in zebrafish embryos. Interestingly, we identified that a subset of HK2 overex-

pressing cells shows features of cancer stem cells including the ability to form 3D spheroids enriched for OCT4 pluripotency factor expression. By flow cytometry, we showed that HK2 overexpression led to the emergence of a rare subpopulation relying on the drug efflux transporter ABCG2. We further confirmed that HK2 regulates this subpopulation in another bone cancer model. In addition to these cellular assays, we carried out proteomics analysis and identified proteins interacting with HK2 and regulated by HK2. HK2 negatively impacts on mechanical signalling and positively regulates the abundance of nuclear proteins and pathways important for tumorigenesis and stemness. We notably identified as new targets of HK2 the membrane protein CAV1 as well as the DNA replication regulator RIF1, two proteins important in cancer. Finally, we observed that HK2 shuttles between the cytoplasm and the nucleus and that this process involves a phosphorylation site of the protein.

In sum, our work reports a new link between HK2 and the regulation of cancer stemness and unsuspected targets of HK2 that might be important for its functions, opening the door to new ways to target HK2's action in cancer cells.

26^e Journées Jeunes Chercheurs en Cancérologie

Prix Kerner

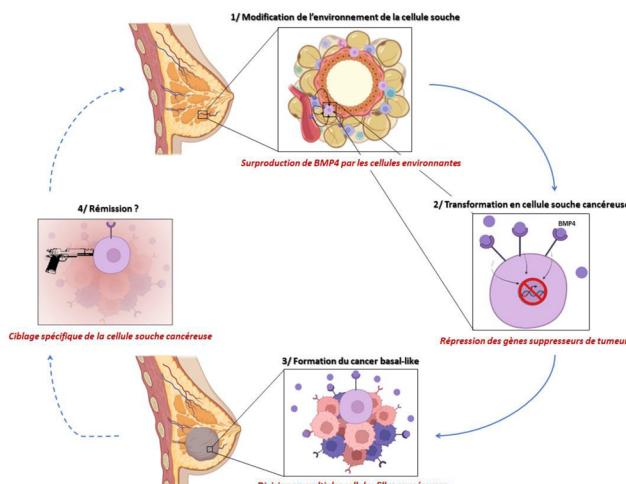
1

Cibler les cellules souches cancéreuses pour traiter le cancer du sein basal-like

Oncologue et doctorant au Centre de Recherche en Cancérologie de Lyon, Simon Aho étudie le cancer basal-like. Ce cancer du sein agressif abrite de redoutables cellules souches cancéreuses à l'origine de son développement. Le jeune chercheur nous en dit plus sur ces cellules intensivement étudiées dans son unité comme cibles potentielles de traitements novateurs.

Pourquoi étudier ce type de cancer ?

En France, on estime qu'1 femme sur 8 développera un cancer du sein. Néanmoins, il existe de nombreux sous-types de gravité variable. Le cancer dit basal-like compte pour environ 15% des cas et ses caractéristiques biologiques offrent peu de possibilités de traitement. Il faut donc mieux le comprendre pour mieux le soigner. Malheureusement, son origine reste méconnue. Mais une piste se dégage : les cellules souches.


Quel est le rôle de ces cellules et quel rapport avec le développement du cancer ?

Le sein est un organe fait de nombreuses cellules différentes. Par exemple, les cellules productrices de lait, les cellules graisseuses, etc... Ces cellules sont programmées pour mourir avant qu'un vieillissement trop important n'altère leur fonction. Lorsque l'une d'entre elles disparaît, il faut néanmoins la remplacer pour maintenir la cohésion de l'organe. C'est le rôle des cellules souches. Elles peuvent se diviser en cellules filles capables de se substituer aux cellules manquantes en acquérant les mêmes caractéristiques.

Le problème, c'est que les cellules souches peuvent parfois devenir cancéreuses. Elles se divisent alors en de multiples cellules filles cancéreuses différentes qui vont former la tumeur. Les cellules souches cancéreuses sont donc essentielles au développement et au maintien du cancer.

Donc vous voulez les éliminer ?

Exactement ! Malheureusement, elles sont peu sensibles aux traitements actuels qui ne sont pas des traitements les ciblant spécifiquement. L'idée est donc d'identifier les mécanismes par lesquels une cellule souche normale va se transformer en cellule souche

La formation du cancer du sein basal-like implique l'émergence de cellules souches cancéreuses. Pour traiter plus efficacement la tumeur, Simon Aho et son équipe proposent de les cibler directement.

cancéreuse et se maintenir sous cette forme dans la tumeur. Ainsi, nous espérons proposer des traitements innovants ciblant ces mécanismes.

Qu'avez-vous découvert jusqu'à présent ?

Dans un premier temps, on a observé au microscope de nombreuses tumeurs basal-like de patientes. Dans ces tumeurs, on a mis en évidence une quantité anormale d'une molécule appelée BMP4. Cette molécule est produite par les cellules voisines des cellules souches. En quantité normale elle assure leur viabilité. En quantité trop importante ? On ne sait pas ! Mais nos observations suggèrent un rôle dans leur transformation en cellules souches cancéreuses.

Comment le prouver ?

Et bien nous avons au labo des cellules souches mammaires normales, dans des boîtes où sont réunies toutes les conditions nécessaires à leur survie. Dans

ces boîtes j'ajoute des quantités importantes de BMP4 et je regarde l'impact sur les cellules souches à différents temps d'exposition. J'ai déjà montré qu'une exposition de seulement quelques jours conduit à l'inactivation de gènes dits suppresseurs de tumeurs. Leur rôle est de réparer dans la cellule les anomalies qui conduisent à l'apparition du cancer. Ils sont comme un frein au développement tumoral. BMP4 lève donc ce frein, ce qui va accélérer l'émergence de cellules souches cancéreuses et favoriser la formation et le maintien du cancer.

Quelles perspectives ce travail ouvre-t-il ?

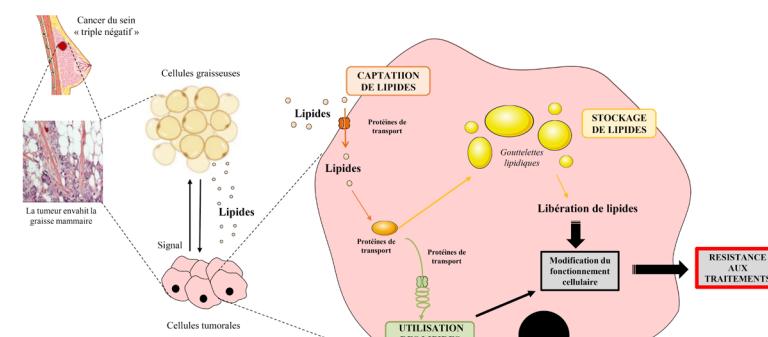
Nous avons aussi identifié le récepteur par lequel passe les effets délétères de BMP4. Celui-ci est particulièrement abondant dans les tumeurs basal-like, ce qui pourrait en faire une cible thérapeutique très intéressante à l'avenir ! La route sera longue jusqu'à cette étape mais l'espoir est bien présent.

2

Le dialogue cellulaire entre cancer du sein et graisse voisine : une nouvelle piste contre la résistance aux traitements

À l'Institut de Pharmacologie et Biologie Structurale de Toulouse, Carlo Arellano est interne en chirurgie gynécologique s'intéresse à l'interaction entre cellules cancéreuses du sein avec la graisse avoisinante. Cette interaction pourrait être un événement clé permettant aux tumeurs de résister aux traitements.

Bonjour M. Arellano, quel est l'objectif de vos travaux de recherche ?


Les cancers du sein dits « triples négatifs » sont souvent très agressifs, concernent souvent la femme jeune et lorsque les patientes répondent mal à la chimiothérapie le risque de rechute est très important. Actuellement on ne sait pas à l'avance quelles patientes vont répondre ou non au traitement. Mon objectif est de démontrer que ce sont les cellules cancéreuses capables d'utiliser les lipides des cellules graisseuses voisines qui seront plus agressives et résistantes aux traitements.

Mais pourquoi travaillez-vous sur cette problématique ?

Une étude récente a montré que ces cancers peuvent se diviser en sous-groupes dépendants de différentes sources d'énergie comme les sucres ou les lipides. Cette étude a également montré que le sous-groupe le plus agressif dépend des lipides de façon plus importante. Si nous montrons que les tumeurs de ce sous-groupe utilisent les lipides des cellules graisseuses et que cette utilisation les rend résistantes aux traitements, nous pourrions alors bloquer le dialogue avec les cellules graisseuses pour améliorer l'effet du traitement.

Quelles sont les conclusions de vos travaux jusqu'ici ?

Toutes les cellules du cancer du sein dit « triple négatif » sont capables d'induire la libération de lipides par les cellules graisseuses, mais seul le sous-groupe le plus agressif peut les capturer massivement. Cela semble être dû à une quantité augmentée de protéines qui captent et intègrent les lipides dans les cellules tumorales. Ces lipides seront stockés dans des gouttelettes et utilisées préférentiellement par la cellule dans divers mécanismes aboutissant à une plus grande résistance aux traitements.

Lorsque le cancer envahit la graisse du sein, un dialogue entre cellules tumorales et adipocytes va s'installer. Ces derniers sous l'influence tumorale, vont libérer des lipides qui seront captés par la cellule cancéreuse, stockés et utilisés dans divers mécanismes pour promouvoir la résistance aux traitements.

Qu'est-ce que vous espérez accomplir dans l'avenir ?

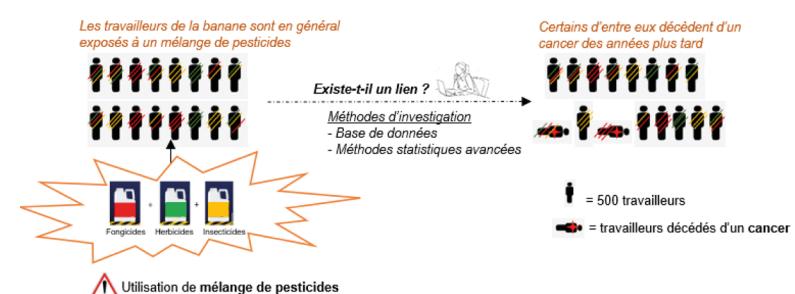
Nous voulons identifier les protéines responsables de l'augmentation de la captation des lipides, et les mécanismes cellulaires qui mènent à la résistance à la chimiothérapie spécifiquement dans les tumeurs les plus agressives. Si nous caractérisons les protéines en cause, nous pourrons les étudier dans les tumeurs humaines pour identifier les patientes à risque de mauvaise réponse au traitement. De la même manière, nous pourrons développer de nouveaux médicaments qui bloquent la captation et l'utilisation des lipides pour restituer l'effet des thérapies et diminuer le risque de rechute.

3

Pesticide et santé : les travailleurs de la banane qui utilisent des mélanges de pesticides auraient un risque plus important de mourir de certains cancers.

Depuis Pointe-à-Pitre en Guadeloupe, la chercheuse en épidémiologie Christine Barul cherche à comprendre si chez les travailleurs de la banane, l'exposition aux pesticides – pas seulement un en particulier, mais un mélange peut plus tard provoquer la mort en raison d'un cancer.

Bonjour Madame Barul, dans ce contexte de pandémie mondiale, nous avons beaucoup entendu parler d'épidémiologie. Quel est le lien avec les recherches que vous menez sur le cancer ?


Bonjour, effectivement, quand on entend « épidémiologie », on pense immédiatement à « épidémie ». Mais l'épidémiologie porte également sur l'étude des maladies chroniques incluant les maladies cardio-vasculaires et le cancer. On sait maintenant que plus de 70% de ces maladies seraient dues à des facteurs environnementaux. Certains « coupables » sont bien identifiés, incluant l'amiante et le diesel qui sont responsables de cancers respiratoires. D'autres sont en « garde à vue » car on les suspecte fortement de jouer un rôle dans l'apparition d'un cancer. C'est le cas des pesticides, substances sur lesquelles je mène mes recherches.

Comment menez-vous votre enquête ?

On sait maintenant qu'on a tout à gagner à considérer les pesticides comme agissant en bande organisée plutôt que de façon isolée. On parle alors d'effet mélange. Avec des méthodes de statistiques avancées, je mène une sorte d'interrogatoire en confrontant les données d'exposition aux pesticides et celles des décès par cancer survenant plus tard. L'idée est de déterminer s'il y a un lien entre l'utilisation de mélange de pesticides et le fait de mourir en raison d'un cancer chez les travailleurs de la banane. Mes résultats préliminaires montrent un lien entre l'utilisation à des niveaux élevés de mélange de pesticides et la mort par cancer des globules rouges.

Vos résultats sont-ils transposables à un agriculteur qui cultive de la pomme de terre dans le Nord de la France ?

Si cet agriculteur utilise des pesticides dans ses champs de pommes de terre, mes résultats de recherche vont directement le concerner car il est sûrement exposé à un mélange de ces substances au quotidien. Il y a également d'autres travailleurs qui sont concernés notamment le personnel affec-

les effets des pesticides sur la santé. Les connaissances que l'on a proviennent majoritairement d'investigations de leur effet « en solitaire » et d'études conduites dans des zones tempérées. Mener mes recherches sur ces travailleurs, c'est d'abord une opportunité de fournir des résultats sur des populations afro-descendantes en manque de données scientifiques, notamment sur le cancer. De plus, en milieu tropical, les conditions climatiques (ex : cyclones) et les nombreuses populations de parasites dans le sol conduisent à une utilisation de pesticides plus importante qu'ailleurs. Nous avons ce type d'environnement en France, particulièrement aux Antilles françaises.

té à l'entretien des espaces verts ou des chaussées qui seront directement concernés par ces nouvelles connaissances.

Quel impact votre projet peut-il avoir pour les patients ?

Le cancer de la prostate et celui des globules rouges sont les seuls qui sont aujourd'hui reconnus comme maladie professionnelle en lien avec l'exposition aux pesticides en France. Mais qu'en est-il des autres cancers ? Mon rôle est un peu comme celui d'un juge d'instruction qui diligente une enquête pour en savoir plus dans le cadre d'une affaire. L'idée est de fournir des éléments de preuves scientifiques qui vont éclairer la communauté scientifique ainsi que les décideurs en charge de la reconnaissance d'un cancer en tant que maladie professionnelle. C'est un enjeu de reconnaissance important pour les agriculteurs et leurs proches.

Pourquoi avez-vous décidé de vous intéresser aux travailleurs de la banane des Antilles françaises ?

Il existe très peu de connaissances sur

4

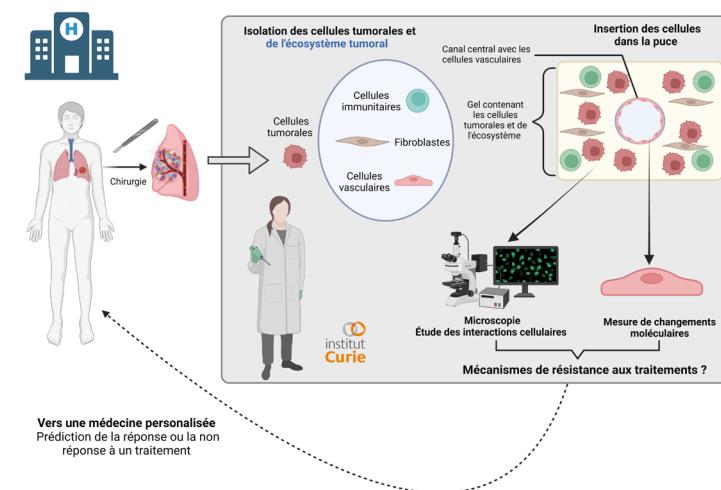
Le pouvoir des tumeurs sur puces : reconstituer l'écosystème d'une tumeur sur un timbre

À l'institut Curie dans le berceau de la cancérologie, Ségolène Ladaigue, chercheuse post-doctorante, participe à la création d'un système de cancer du poumon sur puce vascularisée. Le but ? Miniaturiser un écosystème tumoral cliniquement pertinent pour étudier les mécanismes de résistance aux traitements.

Dr Ladaigue, les tumeurs sur puces qu'est-ce que c'est ?

Les tumeurs sur puces sont des outils permettant de miniaturiser et de reconstituer fidèlement en trois dimensions une tumeur et son écosystème. Les tumeurs sont complexes et sont formées de différents types de cellules. On y retrouve les cellules cancéreuses bien sûr, mais aussi les cellules immunitaires, les cellules de soutien appelées fibroblastes et les vaisseaux sanguins composés de cellules vasculaires.

Il existe des moyens similaires d'étudier les tumeurs, en quoi votre approche est-elle originale ?


C'est vrai, ce genre de dispositif existe depuis une dizaine d'années. Néanmoins, notre approche est originale car nous isolons nos cellules à partir de pièces opératoires de patients opérés pour un cancer du poumon. En effet, la grande majorité des publications dans le domaine utilisent des lignées cellulaires qui ne représentent pas tout à fait la réalité clinique et biologique.

Dans cet écosystème, est-ce que vous vous intéressez à des cellules particulières ?

Mes cellules de prédilection sont les cellules vasculaires. Pourquoi ? Car elles sont essentielles à la tumeur. En l'absence de vaisseaux sanguins la tumeur a du mal à grandir car elle ne reçoit pas les nutriments nécessaires. Plus récemment, il a été suggéré que les cellules vasculaires pourraient modifier le comportement des cellules immunitaires essentielles pour lutter contre la tumeur.

À quoi ressemble votre tumeur sur puce ?

La puce fait à peu près la taille d'un timbre, on peut y introduire un gel contenant les cellules tumorales et celles de l'écosystème. La particularité c'est qu'au centre de ce gel j'insère une aiguille qui permet de former un canal central. Cette aiguille est ensuite

Du patient au laboratoire de recherche : création des tumeurs sur vascularisées.

retirée pour ajouter les cellules vasculaires qui tapissent le canal.

Est-ce que c'est techniquement difficile à faire ?

Alors oui, déjà il y a des contraintes organisationnelles car nous collaborons avec l'hôpital et les expériences ne fonctionnent pas toujours. On ne peut pas acheter la puce toute faite, je réalise chaque étape de A à Z : de la production du support à l'isolation des cellules. Parfois ce sont des détails qui nous empêchent d'aller au bout de notre expérience, vous n'imaginez pas comment une simple bulle peut être ennuyeuse (rires).

Quel type d'expériences réalisez-vous ? Et quels sont vos derniers résultats ?

L'étude du comportement des cellules les unes par rapport aux autres est possible par microscopie. On peut notamment visualiser et quantifier la mort de cellules tumorales induite par les cellules immunitaires. On peut aus-

si étudier des changements moléculaires dans une population cellulaire donnée en fonction de nos conditions expérimentales. Nos résultats préliminaires indiquent que la présence de cellules cancéreuses ou de l'écosystème, induit des changements moléculaires chez les cellules vasculaires. Ces changements pourraient contribuer à inactiver les « bonnes » cellules immunitaires aidant à tuer les cellules cancéreuses.

Pour terminer, quel serait l'impact de vos travaux ?

Ces tumeurs sur puces forment des outils cliniquement pertinents par leur architecture et par la présence de cellules de patients. Elles pourraient permettre de découvrir des mécanismes de résistance aux traitements induits par l'écosystème tumoral et identifier des cibles thérapeutiques. À l'avenir nous souhaiterions prédir la réponse ou la non-réponse d'un patient à un traitement pour faire de la médecine personnalisée, la route est encore longue vers ce chemin.

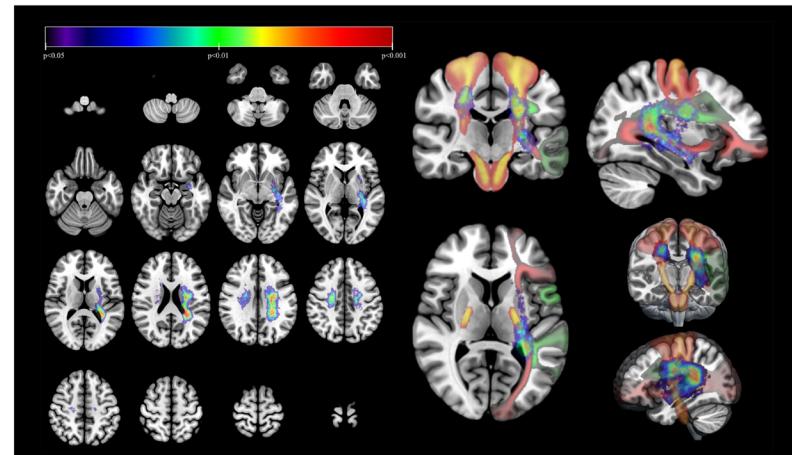
5

Développer un outil pour estimer les risques et les bénéfices de l'ablation chirurgicale d'une tumeur cérébrale

Au GHU Paris on travaille pour développer un atlas de tumeurs du cerveau, pour arriver à établir le taux d'ablation chirurgicale et les risques liés à ce geste.

Bonjour Dr Moiraghi, quel est l'objectif de votre projet ?

Bonjour, j'étudie les gliomes diffus, qui sont les tumeurs du cerveau le plus souvent situées dans des régions du cerveau hautement fonctionnelles, où la résection chirurgicale peut être dangereuse et créer des handicaps au patient (un peu comme dans un AVC).


À ce jour, l'état de l'art est d'opérer ces patients en chirurgie avec le patient éveillé, ce qui permet de tester ses fonctions neurologiques pendant le geste. Tout se base sur l'expérience du chirurgien et sa capacité de faire la balance entre la volonté de retirer le plus de tumeur possible et la nécessité de préserver les fonctions du patient.

Nous n'avons pas d'outils capables de prédire de façon claire, et avant l'opération, la probabilité d'obtenir une résection complète, ou d'identifier les zones plus à risque d'être endommagées.

Mais alors quel serait le bénéfice pour le chirurgien ?

Aujourd'hui nous n'avons pas un référentiel clair qui puisse aider le chirurgien dans le processus décisionnel. Avec cet atlas on pourrait mieux prédire, seulement en regardant l'IRM du patient et les caractéristiques de la tumeur, les probabilités de retirer complètement la tumeur, sans causer des lésions irréversibles au patient.

L'objectif est d'anticiper avec une meilleure précision les cas dans lesquels retirer la tumeur en totalité n'est pas envisageable à cause des risques trop élevés. Cet outil est conçu pour aider le chirurgien et le patient dans un processus décisionnel difficile et avec une référence basée sur des analyses détaillées.

À gauche les images de l'atlas cérébral avec une représentation en code-couleur de la probabilité de résidu tumoral postopératoire (probabilité élevée en bleu, très élevée en vert, presque certain en rouge). À droite la même image avec reconstruction dans les trois dimensions et superposition de structures fonctionnelles (faisceaux nerveux qui contrôlent la motricité en orange et le langage en vert et en rouge).

Comment avez-vous développé cet outil ?

Pour créer l'atlas nous avons analysé chaque gliome diffus opéré en chirurgie éveillée dans notre service. Nous avons annoté des données cliniques des patients et les données des différents composantes tumorales sur l'IRM de chaque patient.

Grace à des logiciels qui permettent le traitement des images radiologiques, on a normalisé les IRM de tous les patients sur un cerveau standard : c'est-à-dire recalées sur une référence commune, qui est la moyenne entre les petites différences anatomiques existantes entre chaque patient.

Sur cette référence commune, grâce à des logiciels qui permettent de superposer les tumeurs de chaque patient, nous avons pu analyser les fréquences avec lesquelles une résection complète ou non, et l'apparition d'un déficit ou non, se sont produites et à quel endroit exact du cerveau.

Quelle est l'évolution en termes de perspectives futures de votre projet ?

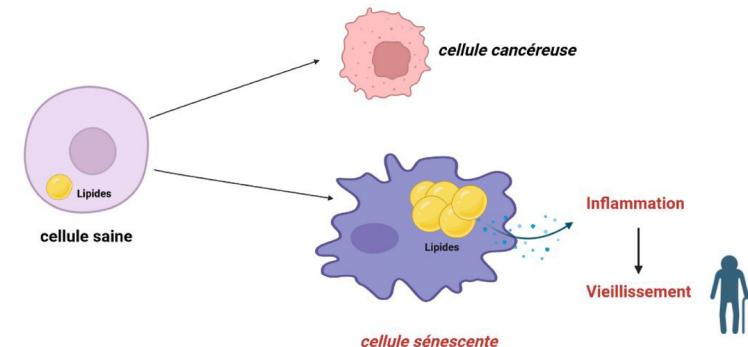
Notre objectif est l'application clinique dans le processus décisionnel. Le patient aussi pourra mieux comprendre les enjeux liés à l'acte chirurgical et discuter en conscience la prise en charge avec son chirurgien. Pour arriver à ce résultat, nous travaillons sur l'automatisation du processus d'analyse d'image, en essayant de le rendre plus rapide et simple, pour qu'il devienne une routine aussi dans la clinique et pas seulement pour la recherche.

Grace à ce développement technique, nous pourrions agrandir la base de données qui forme l'atlas, avec des données de suivi à distance de la chirurgie, et inclure des patients d'autres centres de référence en Europe. Avec une base de référence très large, l'atlas aura une capacité de prédire les risques encore plus précise et fiable.

6

L'accumulation des lipides entraîne l'induction de la sénescence et de l'inflammation.

À l'Institut Necker à Paris, on s'intéresse à l'induction de la sénescence qui est un mécanisme naturel de suppression de tumeurs. Cependant, la sénescence participe aussi à l'inflammation dans l'organisme. L'objectif de Khaled est de trouver un moyen d'induire la sénescence chez les cellules pré-tumorales tout en réduisant l'inflammation qui en résulte.


Bonjour Mr Tighanimine, qu'est-ce que la sénescence ?

Bonjour. Je fais souvent l'analogie entre la sénescence et l'histoire de « Dr Jekyll et Mr Hyde ». La sénescence, c'est le destin d'une cellule qui va s'empêcher elle-même de devenir cancéreuse. C'est-à-dire que quand une cellule sent qu'elle va devenir tumorale, elle se met en état « sénescent », ce qui fait qu'elle ne prolifère plus mais ne meurt pas non plus. C'est son côté Dr Jekyll. À la suite de ça, elle va sécréter plein de molécules inflammatoires pour prévenir le système immunitaire. Celui-ci va donc se mobiliser pour la tuer. Or, plus un organisme vieillit, plus le système immunitaire est défaillant. Ce qui fait que l'élimination des cellules sénescentes est de moins en moins performante avec l'âge. On s'aperçoit donc qu'il y a une accumulation de cellules sénescentes chez les personnes âgées. Ces cellules vont s'accumuler dans les organes et les tissus et induire une inflammation persistante. À la longue, cette inflammation fait apparaître les maladies liées au vieillissement. Les cellules sénescentes deviennent donc délétères. C'est leur côté Mr Hyde.

Quelle a été votre approche pour étudier cette sénescence ?

Dans mon équipe à Necker, on est spécialisés dans le métabolisme des nutriments à l'intérieur des cellules. Par exemple, une cellule normale va ingérer une molécule de glucose et l'utiliser pour une tâche donnée. Dans les cellules sénescentes, j'ai remarqué que le destin des nutriments ingérés changeait radicalement. Ces cellules vont se mettre à fabriquer un grand nombre de lipides et les stocker dans des « poches » dédiées à ça. Ce qui est intéressant, c'est que j'ai réussi à démontrer que « booster » artificiellement la synthèse des lipides poussait des cellules pré-tumorales à devenir sénescentes. Ça, c'est le côté Dr Jekyll de ces

Une sénescence à deux visages

Lorsque soumise à un stress, une cellule peut devenir cancéreuse ou à l'inverse devenir sénescente. L'accumulation des lipides (en jaune) joue un rôle fondamental dans le destin qu'aura cette cellule. Cependant, ces lipides participent activement à l'inflammation des cellules sénescentes, et donc à l'apparition des maladies liées au vieillissement.

lipides. Malheureusement, ce stock de
lipides joue un rôle fondamental dans
l'inflammation. C'est leur côté Mr Hyde.

Comment avez-vous fait pour étudier l'accumulation de ces lipides ?

Une des techniques que j'ai utilisées s'appelle la spectrométrie de masse. C'est un outil qui permet de caractériser la nature des molécules qu'on a dans un échantillon. Par exemple, ça permet de discriminer les protéines, les lipides, les glucides, etc. Grâce à ça, j'ai pu connaître la nature des lipides qui s'accumulent pendant la sénescence. Ensuite, j'ai utilisé de la microscopie pour localiser ces lipides à l'intérieur des cellules sénescentes.

Quel intérêt peuvent avoir vos résultats à l'avenir ?

Actuellement, je travaille sur une molécule qui va peut-être nous permettre de résoudre la question de l'ambivalence de la sénescence. C'est une molécule qui permet de réduire la synthèse des lipides suffisamment pour réduire l'inflammation, mais pas trop non plus pour permettre aux cellules pré-tumorales de devenir sénescentes. C'est donc une molécule avec un potentiel anti-cancéreux aussi bien qu'anti-vieillissement. On débutera des essais sur des souris et des vers de terre dans les prochains mois.

7

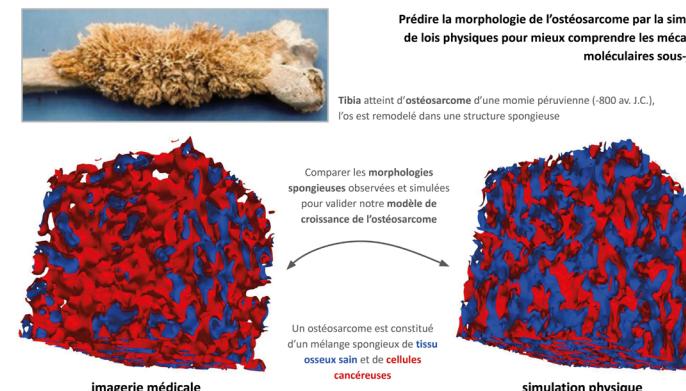
Prédire pour mieux guérir : comprendre comment les sarcomes osseux se développent, avec des ordinateurs

En utilisant les lois de la physique, des chercheurs rennais tentent de comprendre comment des cellules cancéreuses sont capables de proliférer en détournant les mécanismes de construction de l'os.

À quel type de cancer vous intéressez-vous dans le cadre de vos travaux de recherche ?

Je cherche à modéliser la formation d'un ostéosarcome, une tumeur maligne qui apparaît dans l'os, notamment l'os en croissance. Il s'agit d'un donc d'une tumeur un peu spéciale du fait qu'elle touche principalement les adolescents.

Quelle question vous posez-vous au sujet de l'ostéosarcome ?


Je cherche à comprendre la morphologie de l'ostéosarcome et par quels mécanismes physiques des cellules cancéreuses transforment un os sain en un tissu dont la forme évoque une éponge. Une chose bien connue de l'ostéosarcome est qu'il se développe en perturbant le remodelage osseux.

Les cell... Un instant, qu'est-ce que le remodelage osseux ?

Ah, c'est vrai, l'os n'en a pas l'air, mais il se forme et se résoûre en permanence. Les constituants de l'os, le collagène, la partie souple et l'apatite, la partie rigide, sont assemblés, désassemblés et réassemblés en continu. Un peu comme sur un chantier de construction, l'os serait un bâtiment en béton armé, le collagène faisant office de béton et l'apatite d'acier. Un premier type de cellules, les ostéoblastes, oeuvrent à couler le béton renforcé par des armatures en acier. Mais il s'agit d'un chantier un peu particulier. Un second type cellulaire, les ostéoclastes, démantèlent le béton lorsqu'il n'est pas utile ou légèrement endommagé. Les constituants du béton sont alors réemployés par le premier groupe d'ouvriers cellulaires.

Et donc les cellules seraient capables de perturber ce remodelage ?

Exactement, l'ostéosarcome résulte d'une communication perturbée entre les cellules ouvrières. Il en résulte une structure spongieuse, friable, et non plus compacte, résistante. Plus étonnant encore, les cellules cancéreuses semblent capables d'interférer à distance avec le chantier qui se trouve

Lorsque soumise à un stress, une cellule peut devenir cancéreuse ou à l'inverse devenir sénescante. L'accumulation des lipides (en jaune) joue un rôle fondamental dans le destin qu'aura cette cellule. Cependant, ces lipides participent activement à l'inflammation des cellules sénescantes, et donc à l'apparition des maladies liées au vieillissement.

près des cartilages de croissance. Le messager prend probablement la forme d'une molécule, mais nous n'en connaissons pas encore les caractéristiques physiques qui permettraient de l'intercepter. C'est là que mon travail de recherche commence.

En quoi consiste ce travail de recherche ?

Avec Franck Artzner et Arnaud Bardouil, nous avons émis l'hypothèse que l'interaction entre les cellules cancéreuses et les cellules osseuses peut être modélisée par un système dit de réaction-diffusion. Les paramètres de ce modèle physique sont liés à la taille de la molécule messager, et son affinité avec les cellules ouvrières. Je suis alors capable de simuler l'évolution de la structure du tissu pour un large spectre de molécules, aux caractéristiques différentes. Si par chance, j'arrive à trouver un jeu de paramètres qui permet de reproduire la structure spongieuse, j'obtiens alors des informations précieuses sur le messager.

Mais comment savoir si ce messager existe réellement ?

Pour cela, nous comparons les résultats avec des observations expérimentales. Des biologistes de l'INSERM nous fournissent des images en 3D de tissus osseux de souris remodelés en présence de cellules cancéreuses. Si les deux structures spongieuses se ressemblent, alors nous considérons que notre hypothèse est valide, et que nous tenons là des informations pertinentes sur notre messager.

Je comprends mieux votre démarche de physicien. Et d'ailleurs, à quel stade en est votre recherche ?

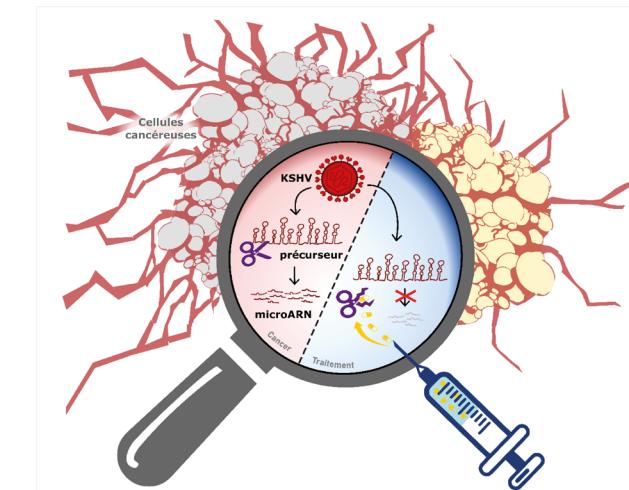
Un de nos premiers résultats a été de soutenir l'hypothèse du modèle de réaction-diffusion, et donc de montrer qu'il y a bien un messager moléculaire émis par les cellules cancéreuses qui perturbe le remodelage osseux. Il semblerait que pour observer un remodelage spongieux de la structure de l'os caractéristique de l'ostéosarcome, un messager rapide soit nécessaire. La molécule en question doit donc être de petite taille ou posséder une forte affinité avec les cellules ouvrières. Ces informations préliminaires restent relatives, mais à terme nous espérons pouvoir dessiner le portrait robot précis de notre messager, afin d'élaborer des pistes pour le déstabiliser.

8

Couper le mal à la racine : nouvelle stratégie de lutte contre un oncovirus

Micro-organismes emblématiques des dernières années, les virus peuvent engendrer des maladies diverses et variées telles que la grippe ou le SIDA pour ne citer que celles-ci. Mais savez-vous que certains pouvaient causer également des cancers ? En réalité, on estime que jusqu'à 15% de tous les cancers sont dus à des infections virales. Au cours de sa thèse effectuée au sein de l'Institut de Biologie Moléculaire et Cellulaire (IBMC) à Strasbourg, Monika Vilimova a consacré ses études à l'un de ces redoutables parasites, le KSHV. Elle nous présente aujourd'hui ses travaux qui visent à inspirer le développement de futures thérapies.

Pourquoi est-il important de s'intéresser à ce virus en particulier ?


Le KSHV est un oncovirus, donc un virus qui provoque le développement de cancers. De plus, les cancers induits par le KSHV ne sont pas traitables avec les thérapies actuelles, en partie parce que nous ne savons pas cibler le virus lui-même. Il est donc urgent de chercher des pistes thérapeutiques originales et innovantes. Pour cela, nous avons besoin de connaître en détail le fonctionnement du virus et de comprendre comment il entraîne le développement cancéreux.

Plus précisément, quel aspect du virus étudiez-vous ?

Je m'intéresse en particulier à l'une des tactiques mises en place par le KSHV afin de survivre dans nos cellules. Cette tactique consiste à produire une grande quantité de petites molécules appelées microARN. Ces microARN interfèrent avec le fonctionnement normal de nombreux mécanismes cellulaires ou les détournent à l'avantage du virus. Par exemple, certains d'entre eux permettent au KSHV d'échapper à notre système immunitaire. D'autres poussent nos cellules à se multiplier de manière anarchique. De façon générale, les microARN permettent au KSHV non seulement de persister, mais aussi de favoriser la formation des cancers.

Quel est l'objectif de votre recherche ?

Je cherche une méthode efficace afin de priver le virus de ses microARN. En réalité, nous ne sommes pas le seul laboratoire qui s'intéresse aux microARN du KSHV et l'idée de les éliminer dans un but thérapeutique n'est pas toute nouvelle. Certains ont déjà développé des molécules qui pourraient cibler tel ou tel microARN unique. Cependant, le

Les microARN du KSHV participent directement à la formation des cancers. Une méthode visant à empêcher leur production pourrait faire partie de futures thérapies.

Le KSHV produit plus d'une dizaine de microARN différents et pour qu'un traitement puisse empêcher tous leurs effets néfastes, il faudrait un véritable cocktail de traitements différents. Ce type de thérapie est compliqué à mettre en place... Dans notre laboratoire, nous avons opté pour une autre approche. Nous avons décidé de ne pas cibler les microARN matures, mais de prendre le problème à la racine, c'est-à-dire d'agir en amont de leur production.

Quelle a été votre démarche ?

Tout d'abord, il fallait bien comprendre comment les microARN étaient produits. On savait déjà qu'au départ, tous les microARN proviennent d'une seule longue molécule qu'on appelle un précurseur. Ce dernier est progressivement découpé en petits morceaux qui deviennent des microARN matures. Pour en savoir plus, j'ai cultivé des cel-

Liste des participants 2022

39 • **ABDI GALAB Mahdia** • Centre de biologie intégrative - Toulouse
40/82 • **AHO Simon** • Centre de Recherche en Cancérologie de Lyon
14 • **AMALRIC Amandine** • Institut des Neurosciences - Montpellier
31/83 • **ARELLANO Carlo** • Institut de Pharmacologie et de Biologie Structurale - Toulouse
33 • **ARQUE Basilia** • Centre de recherche des Cordeliers - Paris
24/84 • **BARUL Christine** • Institut de Recherche Santé Environnement au Travail - Rennes
41 • **BEAUMALE Eva** • Institut Jacques Monod - Paris
42 • **BERCIER Pierre** • Collège de France - Paris
15 • **BIBER Pierrick** • Centre méditerranéen de médecine moléculaire - Nice
16 • **BRUCIAMACCHIE Marine** • Institut de recherche en cancérologie de Montpellier
43 • **BRUZEAU Charlotte** • CRIBL - Limoges
44 • **BUDZYK Manon** • Institut Curie - Paris
45 • **CALVARY Lisa** • Centre de recherche bio-clinique - Clermont-Ferrand
17 • **CHABAB Ghita** • Institut de recherche en cancérologie de Montpellier
18 • **CHAR Remy** • Centre d'immunologie de Marseille - Luminy
46 • **COCHARD Audrey** • Ecole normale supérieure - Paris
47 • **DEMOUCHY Flora** • Institut de génétique et développement - Rennes
48 • **DESIGAUX Théo** • Bioingénierie tissulaire (BIOTIS)-UMR1026 - Bordeaux
69 • **DURAND Simon** • Centre de Recherche en Cancérologie de Lyon
70 • **FABBRI Lucilla** • Institut Curie - Orsay
19 • **FERNANDES Gonçalo** • Institut Curie - Paris
49 • **FRIEDRICH Chloé** • Institut Cochin - Paris
76 • **GABER Mohammed** • Institut de Cancérologie de l'Ouest (France) & Wake Forest University (USA) - Angers & Winston-Salem
25 • **GIRAUD Julie** • Centre Paul Papin - Institut de Cancérologie de l'Ouest - Bordeaux
26 • **GUÉRIN Marion** • Institut Pasteur - Paris
77 • **HASHEMKHANI Mashid** • MSC-Med (Laboratoire Matière et Systèmes Complexes) - Paris
50 • **HUSTIN Lucie** • Institut Curie - Paris
78 • **IMERZOUKENE Ghiles** • IRSET - Rennes
51 • **JULIA Edith** • Centre International de Recherche en Infectiologie - Lyon
85 • **LADAIGUE Ségolène** • Institut Curie - Paris
52 • **LALETIN Vladimir** • Centre de Recherche en Cancérologie de Marseille
53 • **LIAN Yen-Ling** • Institut Curie - Paris
34 • **LOYAUX Romain** • Institut Mondor de Recherche Biomédicale Créteil

71 • **MAROTTE Lucine** • Centre d'immunologie de Marseille-Luminy
27 • **MARTIN Elise** • Gustave Roussy - Villejuif
35 • **MATHIOT Laurent** • Centre de recherche en cancérologie et immunologie - Nantes-Angers
36/86 • **MOIRAGHI Alessandro** • Institut de Psychiatrie et Neurosciences de Paris
54 • **MONROSE Mélusine** • Centre de recherche bio-clinique - Clermont-Ferrand
72 • **MONTEAGUDO SÁNCHEZ Ana** • Institut Jacques Monod - Paris
55 • **MONTEMURRO Marianne** • Centre de Biologie Intégrative - Toulouse
73 • **NAJAFI Javad** • Institut Jacques Monod - Paris
28 • **NGUYEN-VIGOUROUX Clémence** • Gustave Roussy - Villejuif
20 • **OLABE Julie** • Centre de recherche bio-clinique - Clermont-Ferrand
56 • **PICANT Valentin** • Centre de Recherche en Cancérologie de Lyon
57 • **PIRIS Patricia** • Centre de Recherche en Cancérologie de Marseille
58 • **POTEAU Marion** • Gustave Roussy - Villejuif
59 • **REYNAUD Amandine** • Centre Léon Berard - Lyon
37 • **ROULLEAUX DUGAGE Matthieu** • Gustave Roussy - Villejuif
79 • **RUGGIU Mathilde** • Institut Pasteur - Paris
60 • **SAOUT Judikael** • Institut de Recherche Santé Environnement et Travail - Rennes
61 • **SCHIRMEISEN Kamila** • Institut Curie - Orsay
62 • **SEBA Mohammed** • Institut de Biologie Intégrative de la Cellule - Gif-sur-Yvette
63 • **THOMAS Morgane** • CRIBL - Limoges
64/87 • **TIGHANIMINE Khaled** • Institut Necker Enfants Malades - Paris
74 • **TRAN NGUYEN Viet Khoa** • Centre de Recherche en Cancérologie de Marseille
88 • **VASSAUX Maxime** • Institut de Physique de Rennes
21/89 • **VILIMOVA Monika** • Institut de Biologie Moléculaire et Cellulaire - Strasbourg
22 • **WANG Yanan** • Ecole polytechnique - Palaiseau
80 • **WATZKY Manon** • Institut Cochin - Paris
65 • **WILLIART Alice** • Institut Curie - Paris
66 • **ZIDI Nour** • Institut Curie - Orsay
67 • **ZOUIOUCH Mehdi** • Institut de Génétique et de Biologie Moléculaire et Cellulaire - Illkirch

Notes**Notes**

Notes